skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Intelligent Reflecting Surface-Aided Electromagnetic Stealth Strategy
Electromagnetic wave absorbing material (EWAM) plays an essential role in manufacturing stealth aircraft, which can achieve the electromagnetic stealth (ES) by reducing the strength of the signal reflected back to the radar system. However, the stealth performance is limited by the coating thickness, incident wave angles, and working frequencies. To tackle these limitations, we propose a new intelligent reflecting surface (IRS)-aided ES system where an IRS is deployed at the target to synergize with EWAM for effectively mitigating the echo signal and thus reducing the radar detection probability. Considering the monotonic relationship between the detection probability and the received signal-to-noise-ratio (SNR) at the radar, we formulate an optimization problem that minimizes the SNR under the reflection constraint of each IRS element, and a semi-closed-form solution is derived by using Karush-Kuhn-Tucker (KKT) conditions. Simulation results validate the superiority of the proposed IRS-aided ES system compared to various benchmarks.  more » « less
Award ID(s):
2107182 2030029
PAR ID:
10517890
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Wireless Communications Letters
Volume:
13
Issue:
5
ISSN:
2162-2337
Page Range / eLocation ID:
1498 to 1502
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper addresses the high overheads associated with intelligent reflecting surface (IRS) aided wireless systems. By exploiting the inherent spatial correlation among the IRS elements, we propose a novel approach that randomly samples the IRS phase configurations from a carefully designed distribution and opportunistically schedules the user equipments (UEs) for data transmission. The key idea is that when IRS configuration is randomly chosen from a channel statistics-aware distribution, it will be near-optimal for at least one UE, and upon opportunistically scheduling that UE, we can obtain nearly all the benefits from the IRS without explicitly optimizing it. We formulate and solve a variational functional problem to derive the optimal phase sampling distribution. We show that, when the IRS phase configuration is drawn from the optimized distribution, it is sufficient for the number of UEs to scale exponentially with the rank of the channel covariance matrix, not with the number of IRS elements, to achieve a given target SNR with high probability. Our numerical studies reveal that even with a moderate number of UEs, the opportunistic scheme achieves near-optimal performance without incurring the conventional IRS-related signaling overheads and complexities. 
    more » « less
  2. This paper explores the use of reconfigurable intelligent surfaces (RISs) for moving target detection in multi-input multi-output (MIMO) radar. Unlike previous related works that ignore the propa-gation delay difference between the direct path and the RIS-reflected path, we examine the detection problem in RIS-assisted MIMO radar by taking into account the effect of asynchronous propagation. Specifically, we first develop a general signal model for RIS-aided MIMO radar with multiple asynchronous RISs and arbitrary wave-forms. Next, we formulate the RIS design problem by maximizing the overall received signal energy. The resulting optimization problem is non-convex, which is solved with semidefinite relaxation (SDR) techniques. A coherent detector is introduced for target detection. Finally, numerical results are presented to demonstrate the performance of the RIS-aided MIMO radar in comparison with the conventional MIMO radar. 
    more » « less
  3. This paper presents an analysis of the bed detecting capabilities of an ice sounding radar integrated onto a small, unmanned aircraft system (UAS). We evaluated the average signal-to-noise ratio (SNR) and signal-to-interference ratio (SINR) of radar measurements collected by the UAS over Greenland’s Helheim Glacier in 2022 and compared those to radar measurements collected over the same region using a radar-equipped Twin Otter around 2008. The statistical analysis presented of the SNR and the SINR shows that both systems have comparable bed detection capabilities. While the average SNR for all points considered is more than 20 dB higher for the Twin Otter system, the average SINR of both has a similar value. The overall average SINR is 9.79 dB for the UAS and 9.19 dB for the MA. As it is discussed in the paper, the lower SNR of the UAS system is attributed to its lower operating frequency, while the comparable SINR depends on various factors. The results of this paper have implications on planning and design of future field deployments. 
    more » « less
  4. Electronically tunable metasurfaces, or Intelligent Reflecting Surfaces (IRSs), are a popular technology for achieving high spectral efficiency in modern wireless systems by shaping channels using a multitude of tunable passive reflecting elements. Capitalizing on key practical limitations of IRS-aided beamforming pertaining to system modeling and channel sensing/ estimation, we propose a novel, fully data-driven Zerothorder Stochastic Gradient Ascent (ZoSGA) algorithm for general two-stage (i.e., short/long-term), fully-passive IRS-aided stochastic utility maximization. ZoSGA learns long-term optimal IRS beamformers jointly with short-term optimal precoders (e.g., WMMSE-based) via minimal zeroth-order reinforcement and in a strictly model-free fashion, relying solely on the effective compound channels observed at the terminals, while being independent of channel models or network/IRS configurations. Another remarkable feature of ZoSGA is being amenable to analysis, enabling us to establish a state-of-the-art (SOTA) convergence rate of the order of O( S −4) under minimal assumptions, where S is the total number of IRS elements, and   is a desired suboptimality target. Our numerical results on a standard MISO downlink IRS-aided sumrate maximization setting establish SOTA empirical behavior of ZoSGA as well, consistently and substantially outperforming standard fully model-based baselines. Lastly, we demonstrate that ZoSGA can in fact operate in the field, by directly optimizing the capacitances of a varactor-based electromagnetic IRS model (unknown to ZoSGA) on a multiple user/IRS, link-dense network setting, with essentially no computational overheads or performance degradation. 
    more » « less
  5. The quality of human respiratory motion measurements made with Doppler radar depends on the amount of reflected signal received and the overall signal to noise ratio (SNR) of the measurement. The non-uniform characteristics of the human torso and its motion impact both the amount of signal returned toward the radar and its polarization. This study used a 2.4 GHz continuous wave Doppler radar system to compare the respiratory motion measurement performance for circular polarized antennas and linear polarized antennas, using mechanical respiratory phantom measurements at a nominal distance of one meter. While the different surfaces examined produced varied levels of signal at the original and other polarizations, the measurements using circular polarized antennas consistently provided less overall received signal and no significant improvement of SNR. 
    more » « less