skip to main content


Title: Curvature polishing for light-weight, thin reflective optics
Traditional optical manufacturing techniques such as abrasive polishing and diamond turning create precise surfaces by removing material from the optical surface of a mirror. Such techniques often require many cycles of removal and metrology and can leave surface roughness or tool marks that negatively affect the straylight properties of an optical system. These residual artifacts often necessitate expensive postprocessing such as ion beam finishing. Limiting straylight is particularly crucial in the design of reflecting coronagraphs or optical systems that are sensitive to scattered light, for example for exoplanet detection, where even low-level scattering can degrade contrast ratios below the sensitivity needed to detect exoplanets. We introduce a non-contact method for shaping thin front-surface mirrors to avoid tool artifacts. Using laser techniques to alter local surface stresses, we deterministically introduce ≥ 8 waves (632.8 nm) of shape to 2 mm thick substrates. A deterministic method for creating arbitrary surface figures is under development and calibration.  more » « less
Award ID(s):
1822049 2310640 2310681 1822026
PAR ID:
10517941
Author(s) / Creator(s):
; ;
Editor(s):
DeGroote_Nelson, Jessica; Unger, Blair L
Publisher / Repository:
SPIE
Date Published:
Journal Name:
Joint poster session at Optica Design and Fabrication
ISBN:
9781510668058
Page Range / eLocation ID:
6
Format(s):
Medium: X
Location:
Rochester, United States
Sponsoring Org:
National Science Foundation
More Like this
  1. Time-resolved optical conductivity is an often used tool to interrogate quantum materials driven out of equilibrium. Theoretically calculating this observable is a complex topic with several approaches discussed in the literature. Using a nonequilibrium Keldysh formalism and a functional derivative approach to the conductivity, we present a comparison of two particular approaches to the calculation of the optical conductivity and their distinguishing features, as applied to a pumped superconductor. The two methods are distinguished by the relative motion of the probe and gate times; either the probe or gate time is kept fixed while the other is swept. We find that both the methods result in same qualitative features of the time-resolved conductivity after pump is over. However, calculating the conductivity by keeping the gate fixed removes artifacts inherent to the other method. We provide software that, based on data for the first method, is able to construct the second approach. 
    more » « less
  2. Software projects produce large quantities of data such as feature requests, requirements, design artifacts, source code, tests, safety cases, release plans, and bug reports. If leveraged effectively, this data can be used to provide project intelligence that supports diverse software engineering activities such as release planning, impact analysis, and software analytics. However, project stakeholders often lack skills to formulate complex queries needed to retrieve, manipulate, and display the data in meaningful ways. To address these challenges we introduce TiQi, a natural language interface, which allows users to express software-related queries verbally or written in natural language. TiQi is a web-based tool. It visualizes available project data as a prompt to the user, accepts Natural Language (NL) queries, transforms those queries into SQL, and then executes the queries against a centralized or distributed database. Raw data is stored either directly in the database or retrieved dynamically at runtime from case tools and repositories such as Github and Jira. The transformed query is visualized back to the user as SQL and augmented UML, and raw data results are returned. Our tool demo can be found on YouTube at the following link:http://tinyurl.com/TIQIDemo. 
    more » « less
  3. Wide-field astronomical surveys are often affected by the presence of undesirable reflections (often known as “ghosting artifacts” or “ghosts”) and scattered-light artifacts. The identification and mitigation of these artifacts is important for rigorous astronomical analyses of faint and low-surface-brightness systems. In this work, we use images from the Dark Energy Survey (DES) to train, validate, and test a deep neural network (Mask R-CNN) to detect and localize ghosts and scatteredlight artifacts. We find that the ability of the Mask R-CNN model to identify affected regions is superior to that of conventional algorithms that model the physical processes that lead to such artifacts, thus providing a powerful technique for the automated detection of ghosting and scattered-light artifacts in current and near-future surveys. 
    more » « less
  4. Background subtraction is a general problem in spectroscopy often addressed with application-specific techniques, or methods that introduce a variety of implementation barriers such as having to specify peak-free regions of the spectrum. An iterative dual-tree complex wavelet transform-based background subtraction method (DTCWT-IA) was recently developed for the analysis of ultrafast electron diffraction patterns. The method was designed to require minimal user intervention, to support streamlined analysis of many diffraction patterns with complex overlapping peaks and time-varying backgrounds, and is implemented in an open-source computer program. We examined the performance of DTCWT-IA for the analysis of spectra acquired by a range of optical spectroscopies including ultraviolet–visible spectroscopy (UV–Vis), X-ray photoelectron spectroscopy (XPS), and surface-enhanced Raman spectroscopy (SERS). A key benefit of the method is that the user need not specify regions of the spectrum where no peaks are expected to occur. SER spectra were used to investigate the robustness of DTCWT-IA to signal-to-noise levels in the spectrum and to user operation, specifically to two of the algorithm parameter settings: decomposition level and iteration number. The single, general DTCWT-IA implementation performs well in comparison to the different conventional approaches to background subtraction for UV–Vis, XPS, and SERS, while requiring minimal input. The method thus holds the same potential for optical spectroscopy as for ultrafast electron diffraction, namely streamlined analysis of spectra with complex distributions of peaks and varying signal levels, thus supporting real-time spectral analysis or the analysis of data acquired from different sources.

     
    more » « less
  5. Abstract Background Structured illumination microscopy (SIM) is a method that can be used to image biological samples and can achieve both optical sectioning and super-resolution effects. Optimization of the imaging set-up and data-processing methods results in high-quality images without artifacts due to mosaicking or due to the use of SIM methods. Reconstruction methods based on Bayesian estimation can be used to produce images with a resolution beyond that dictated by the optical system. Findings Five complete datasets are presented including large panoramic SIM images of human tissues in pathophysiological conditions. Cancers of the prostate, skin, ovary, and breast, as well as tuberculosis of the lung, were imaged using SIM. The samples are available commercially and are standard histological preparations stained with hematoxylin-eosin. Conclusion The use of fluorescence microscopy is increasing in histopathology. There is a need for methods that reduce artifacts caused by the use of image-stitching methods or optical sectioning methods such as SIM. Stitched SIM images produce results that may be useful for intraoperative histology. Releasing high-quality, full-slide images and related data will aid researchers in furthering the field of fluorescent histopathology. 
    more » « less