skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microclimate complexity in temperate grasslands: implications for conservation and management under climate change
Abstract As climate change advances, there is a need to examine climate conditions at scales that are ecologically relevant to species. While microclimates in forested systems have been extensively studied, microclimates in grasslands have received little attention despite the climate vulnerability of this endangered biome. We employed a novel combination of iButton temperature and humidity measurements, fine-scale spatial observations of vegetation and topography collected by unpiloted aircraft system, and gridded mesoclimate products to model microclimate anomalies in temperate grasslands. We found that grasslands harbored diverse microclimates and that primary productivity (as represented by normalized difference vegetation index), canopy height, and topography were strong spatial drivers of these anomalies. Microclimate heterogeneity is likely of ecological importance to grassland organisms seeking out climate change refugia, and thus there is a need to consider microclimate complexity in the management and conservation of grassland biodiversity.  more » « less
Award ID(s):
2021898
PAR ID:
10518000
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Science
Date Published:
Journal Name:
Environmental Research Letters
Volume:
18
Issue:
6
ISSN:
1748-9326
Page Range / eLocation ID:
064023
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Synopsis Predicting performance responses of insects to climate change is crucial for biodiversity conservation and pest management. While most projections on insects’ performance under climate change have used macro-scale weather station data, few incorporated the microclimates within vegetation that insects inhabit and their feeding behaviors (e.g., leaf-nesting: building leaf nests or feeding inside). Here, taking advantage of relatively homogenous vegetation structures in agricultural fields, we built microclimate models to examine fine-scale air temperatures within two important crop systems (maize and rice) and compared microclimate air temperatures to temperatures from weather stations. We deployed physical models of caterpillars and quantified effects of leaf-nesting behavior on operative temperatures of two Lepidoptera pests: Ostrinia furnacalis (Pyralidae) and Cnaphalocrocis medinalis (Crambidae). We built temperature-growth rate curves and predicted the growth rate of caterpillars with and without leaf-nesting behavior based on downscaled microclimate changes under different climate change scenarios. We identified widespread differences between microclimates in our crop systems and air temperatures reported by local weather stations. Leaf-nesting individuals in general had much lower body temperatures compared to non-leaf-nesting individuals. When considering microclimates, we predicted leaf-nesting individuals grow slower compared to non-leaf-nesting individuals with rising temperature. Our findings highlight the importance of considering microclimate and habitat-modifying behavior in predicting performance responses to climate change. Understanding the thermal biology of pests and other insects would allow us to make more accurate projections on crop yields and biodiversity responses to environmental changes. 
    more » « less
  2. Abstract Most biodiversity dynamics and ecosystem processes on land take place in microclimates that are decoupled from the climate as measured by standardised weather stations in open, unshaded locations. As a result, microclimate monitoring is increasingly being integrated in many studies in ecology and evolution.Overviews of the protocols and measurement methods related to microclimate are needed, especially for those starting in the field and to achieve more generality and standardisation in microclimate studies.Here, we present 10 practical guidelines for ground‐based research of terrestrial microclimates, covering methods and best practices from initial conceptualisation of the study to data analyses.Our guidelines encompass the significance of microclimates; the specifics of what, where, when and how to measure them; the design of microclimate studies; and the optimal approaches for analysing and sharing data for future use and collaborations. The paper is structured as a chronological guide, leading the reader through each step necessary to conduct a comprehensive microclimate study. At the end, we also discuss further research avenues and development in this field.With these 10 guidelines for microclimate monitoring, we hope to stimulate and advance microclimate research in ecology and evolution, especially under the pressing need to account for buffering or amplifying abilities of contrasting microhabitats in the context of global climate change. 
    more » « less
  3. Abstract An issue of global concern is how climate change forcing is transmitted to ecosystems. Forest ecosystems in mountain landscapes may demonstrate buffering and perhaps decoupling of long‐term rates of temperature change, because vegetation, topography, and local winds (e.g., cold air pooling) influence temperature and potentially create microclimate refugia (areas which are relatively protected from climate change). We tested these ideas by comparing 45‐year regional rates of air temperature change to unique temporal and spatial air temperature records in the understory of regionally representative stable old forest at the H.J. Andrews Experimental Forest, Oregon, USA. The 45‐year seasonal patterns and rates of warming were similar throughout the forested landscape and matched regional rates observed at 88 standard meteorological stations in Oregon and Washington, indicating buffering, but not decoupling of long‐term climate change rates. Consideration of the energy balance explains these results: while shading and airflows produce spatial patterns of temperature, these processes do not counteract global increases in air temperature driven by increased downward, longwave radiation forced by increased anthropogenic greenhouse gases in the atmosphere. In some months, the 45‐year warming in the forest understory equaled or exceeded spatial differences of air temperature between the understory and the canopy or canopy openings and was comparable to temperature change over 1,000 m elevation, while in other months there has been little change. These findings have global implications because they indicate that microclimate refugia are transient, even in this forested mountain landscape. 
    more » « less
  4. ABSTRACT The below‐ground growing season often extends beyond the above‐ground growing season in tundra ecosystems and as the climate warms, shifts in growing seasons are expected. However, we do not yet know to what extent, when and where asynchrony in above‐ and below‐ground phenology occurs and whether variation is driven by local vegetation communities or spatial variation in microclimate. Here, we combined above‐ and below‐ground plant phenology metrics to compare the relative timings and magnitudes of leaf and fine‐root growth and senescence across microclimates and plant communities at five sites across the Arctic and alpine tundra biome. We observed asynchronous growth between above‐ and below‐ground plant tissue, with the below‐ground season extending up to 74% (~56 days) beyond the onset of above‐ground leaf senescence. Plant community type, rather than microclimate, was a key factor controlling the timing, productivity, and growth rates of fine roots, with graminoid roots exhibiting a distinct ‘pulse’ of growth later into the growing season than shrub roots. Our findings indicate the potential of vegetation change to influence below‐ground carbon storage as the climate warms and roots remain active in unfrozen soils for longer. Taken together, our findings of increased root growth in soils that remain thawed later into the growing season, in combination with ongoing tundra vegetation change including increased shrub and graminoid abundance, indicate increased below‐ground productivity and altered carbon cycling in the tundra biome. 
    more » « less
  5. Abstract Vegetation responds dynamically to local microclimates at both short and long time scales via mechanisms ranging from physiological behaviors, such as stomatal closure, to acclimation and adaptation. These responses influence the carbon, water, and energy cycles directly and are therefore crucial to understanding and predicting Earth system responses to a changing climate. Several recent studies have demonstrated that differences in microclimate can induce structural and functional acclimations, and potentially adaptations, within the same ecosystem. Such microclimate divergence can be caused by variability in slopes, disturbance history, or even localized resource availability. Ecosystem stressors such as low soil water availability, limited photoperiod, or high vapor pressure deficit have been shown to reveal the large impact of the subtle differences within these systems such as the number of sun versus shade leaves or differences in whole‐plant water acquisition and use. These findings highlight the linkages between plant canopy structure and ecosystem function, alongside the need for comprehensive analyses of vegetation within the broader context of its environment. This commentary addresses some of the key implications of ecosystem stress responses and accompanying acclimations across three ecosystem types for ecosystem ecology, plant physiology, ecohydrology and trait‐based modeling of vegetation‐climate dynamics. 
    more » « less