skip to main content


Title: Influence of foliar traits, watershed physiography, and nutrient subsidies on stream water quality in the upper midwestern United States

The relationship between nutrient cycling and water quality in mixed-use ecosystems is driven by interactions among biotic and abiotic processes. However, the underlying processes cannot always be directly observed or modeled at broad spatial scales. Numerous empirical studies have employed land use patterns, variations in watershed physiography or disturbance regimes to characterize nutrient export from mixed-use watersheds, but simultaneously disentangling the effects of such factors remains challenging and few models directly incorporate vegetation biochemistry. Here we use structural equation models (SEMs) to assess the relative influence of foliar chemical traits (derived from imaging spectroscopy), watershed physiography, and human land use on the water quality (summer baseflow nitrate-N and soluble reactive phosphorus concentration) in watersheds across the Upper Midwestern United States. We use an SEM to link water quality (stream nitrate-nitrogen and dissolved phosphorus) to foliar retention (AVIRIS-Classic derived foliar traits related to recalcitrance), watershed retention (wetland proportion, MODIS Tasseled Cap Wetness), runoff (agricultural and urban land use), and watershed leakiness (AVIRIS-Classic foliar nitrogen, nitrogen deposition). The SEMs confirmed that variables associated with foliar retention derived from imaging spectroscopy are negatively related to watershed leakiness (standardized path coefficient = −0.892) and positively to watershed retention (standardized path coefficient = 0.705), with features related to watershed retention and runoff exerting the strongest controls on water quality (standardized path coefficients of −0.270 and 0.331 respectively). Comparing forested and agricultural watersheds, we found significantly increased importance of foliar retention to watershed leakiness in forests compared to agriculture (standardized coefficients of −1.004 and −0.764 respectively), with measures of watershed retention more important to runoff and water quality in agricultural watersheds. The results illustrate the capacity of imaging spectroscopy to provide measures of foliar traits that influence nutrient cycling in watersheds. Ultimately, the results may help focus development and restoration policies towards building more resilient landscapes that take into consideration associations among functional traits of vegetation, physiography and climate.

 
more » « less
Award ID(s):
2021898
PAR ID:
10518016
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Environmental Science
Volume:
10
ISSN:
2296-665X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Agricultural land cover in the U.S. Midwest is a major source of nutrient pollution that has led to impairment of stream water quality. This study examines the impact of a forested state park on nutrient concentrations within an agriculturally dominated watershed. Water samples were collected over a 2‐year study period from eight stream sampling sites along four creeks and processed for total nitrogen (TN), nitrate (), total phosphorus (TP), and orthophosphate (). Hydrology, channel morphology, and remotely sensed land cover and vegetation data were also collected and analyzed within the study area. Results indicate that water quality responses to a forested state park vary between TN, , TP, and , and water quality variables are uniquely influenced by watershed and stream characteristics. The greatest water quality benefits most frequently occurred within the two smallest study streams with the greatest residence times and proportion of watershed areas within the forested state park. Overall, the greatest improvements to water quality occurred during periods of low stream discharge and when riparian vegetation was greenest. The results of this study suggest that conservation of forested areas within agriculturally dominated watersheds can provide water quality improvements in the U.S. Midwest. Targeting watersheds that drain small streams with long residence times for conservation may be most beneficial to improving water quality.

     
    more » « less
  2. Abstract

    Urban development of watersheds increases runoff and nitrogen loads by adding urban impervious surfaces and increasing the hydrologic connectivity of these surfaces to streams. Storm water control measures (SCMs) are designed to disrupt this connectivity by retaining water in biologically active depressions where nitrogen retention, transformation, and removal occur. This work applies a mechanistic, spatially distributed, hydroecological model (RHESSys) to a suburban watershed in Charlotte, NC, with 15% total imperviousness (TI) and 33% watershed area mitigated by SCMs. We developed emergent relationships between watershed‐scale predictors (TI and connectivity to SCMs) and water and nitrogen response variables (storm water runoff ratios and nitrogen load by species). Results showed that annual runoff ratios were insensitive to increases in connectivity to SCMs (varying by ~1% of rainfall) because SCMs did not substantially increase evaporation but that runoff ratios increased by an average 0.2% per 1% increase in TI due to decreases in transpiration in the watershed. Generally, nitrate loads increased with TI but decreased as more surfaces were mitigated by SCMs. However, these nitrate reductions corresponded to increased export of dissolved organic nitrogen and ammonium. Together, these results indicate that SCMs act as both removers and transformers of nitrogen at the watershed scale. SCMs showed a net assimilation of nitrogen in warm months and net release in cool months, which offset the timing of nitrogen export relative to inputs. This work highlights that using a hydroecological, process‐based model reveals both the emergent relationships between watershed condition and response and the processes controlling those relationships.

     
    more » « less
  3. Nonpoint source (NPS) pollution is a pressing issue worldwide, especially in the Chesapeake Bay, where sediment, nitrogen (N), and phosphorus (P) are the most critical water quality concerns. Despite significant efforts by federal, state, and local governments, the improvement in water quality has been limited. Investigating the spatial distribution of NPS hotspots can help understand NPS pollutant output and guide control measures. We hypothesize that as land cover changes from natural (e.g., forestland) and agricultural to suburban and ultra-urban, the distribution of NPS pollution source areas becomes increasingly spatially uniform. To test this hypothesis, we analyzed three real watersheds with varying land cover (Greensboro watershed for agriculture, Watts Branch watershed for suburban, and Watershed 263 for ultra-urban) and three synthetic watersheds developed based on the Watts Branch watershed, which ranged from forested and agricultural to ultra-urban but had the same soil, slope, and weather conditions. The Soil and Water Assessment Tool (SWAT) was selected as a phenomenological model for the analysis, and SWAT-CUP was used for model calibration and validation. The hydrologic responses of the three real and synthetic watersheds were simulated over ten years (1993–2002 or 2002–2011), and calibration and validation results indicated that SWAT could properly predict the export of runoff and three target NPS pollution constituents (sediment, total nitrogen, and total phosphorus). The results showed that the distribution of NPS pollutant outputs becomes increasingly uniform as land cover changes from agriculture to ultra-urban across watersheds. This research suggests that the spatial distribution of NPS pollution source areas is a function of the major land cover category of study watersheds, and control strategies should be adapted accordingly. If NPS pollution is distributed unevenly across a watershed, hotspot areas output a disproportionate amount of pollution and require more targeted and intensive control measures. Conversely, if the distribution of NPS pollution is more uniform across a watershed, the control strategies need to be more widespread and encompass a larger area. 
    more » « less
  4. Nutrient runoff from agricultural regions of the midwestern U.S. corn belt has degraded water quality in many inland and coastal water bodies such as the Great Lakes and Gulf of Mexico. Under current climate, observational studies have shown that winter cover crops can reduce dissolved nitrogen and phosphorus losses from row-cropped agricultural watersheds, but performance of cover crops in response to climate variability and climate change has not been systematically evaluated. Using the Soil & Water Assessment Tool (SWAT) model, calibrated using multiple years of field-based data, we simulated historical and projected future nutrient loss from two representative agricultural watersheds in northern Indiana, USA. For 100% cover crop coverage, historical simulations showed a 31–33% reduction in nitrate (NO3−) loss and a 15–23% reduction in Soluble Reactive Phosphorus (SRP) loss in comparison with a no-cover-crop baseline. Under climate change scenarios, without cover crops, projected warmer and wetter conditions strongly increased nutrient loss, especially in the fallow period from Oct to Apr when changes in infiltration and runoff are largest. In the absence of cover crops, annual nutrient losses for the RCP8.5 2080s scenario were 26–38% higher for NO3−, and 9–46% higher for SRP. However, the effectiveness of cover crops also increased under climate change. For an ensemble of 60 climate change scenarios based on CMIP5 RCP4.5 and RCP8.5 scenarios, 19 out of 24 ensemble-mean simulations of future nutrient loss with 100% cover crops were less than or equal to historical simulations with 100% cover crops, despite systematic increases in nutrient loss due to climate alone. These results demonstrate that planting winter cover crops over row-cropped land areas constitutes a robust climate change adaptation strategy for reducing nutrient losses from agricultural lands, enhancing resilience to a projected warmer and wetter winter climate in the midwestern U.S. 
    more » « less
  5. Abstract

    Urbanization increases stormwater runoff into streams, resulting in channel erosion, and increases in sediment and nutrient delivery to receiving water bodies. Stream restoration is widely used as a Best Management Practice to stabilize banks and reduce sediment and nutrient loads. While most instream nutrient retention measurements are often limited to low flow conditions, most of the nutrient load is mobilized at high stream flows in urban settings. We, therefore, use a process‐based stream ecosystem model in conjunction with measurements at low flows and focus on estimation of stream nitrogen retention over the full streamflow distribution. The model provides a theoretical framework to evaluate the geomorphic, hydrologic, and ecological factors that are manipulated by stream restoration, and drive nitrogen retention. We set a model for a pool‐riffle sequence restored stream (190 m) in Baltimore County, Maryland and calibrated the model to thein situmeasured primary production (Nash–Sutcliffe model efficiency coefficient [NSE] NSE = 0.89), respiration (NSE = 0.74), and nitrate uptake lengths (R2 = 0.88). At the daily scale, simulations showed low nitrogen retention during high flows due to high transport rates, mobilization of stored hyporheic nitrogen, and scouring of periphyton biomass. This result underscores the need to reduce contributing watershed runoff flashiness to promote aquatic nutrient cycling and retention. At monthly and yearly time scale, model predicted a higher percent reduction in summer than in winter and estimated 5.7%–9.5% of annual nitrate reductions. While the model was tested in a pool‐riffle sequence restoration design, the approach can be adapted to evaluate a range of channel restoration design characteristics, and the effects of upland watershed restoration to mitigate stormwater loading through both restored and unrestored streams.

     
    more » « less