Dataset Abstract Plant dwelling insect occurrence in the LTER main site (all treatments) of the KBS-LTER has been recorded since 1989 and in the successional and forest sites since 1993. The effort has focused on characterizing the temporal and spatial abundance and diversity of a set of insects representative of a higher order insect trophic level, the herbivore predators. The insect database contains more than 400,000 records and consists of counts of adult insects of fourteen species of Coccinellidae, one species of Chrysopidae, and one species of Lampyridae from 30 sample sites in each of the seven treatments in the LTER Main Site. The standard method used to measure these organisms is a yellow sticky trap. Sampling is conducted weekly during the growing season as described in the sampling protocol. original data source http://lter.kbs.msu.edu/datasets/26
more »
« less
Long Term Ecological Research (LTER) Network Site Boundaries
This is a set of Long Term Ecological Research (LTER) site boundaries preserved as a shapefile. Note that for some sites “real” boundaries are included while others–particularly marine sites–use a simpler bounding box method. Each site is listed both with its three-letter abbreviation and its unabbreviated name. World Geodetic System 1984 (WGS84) is the coordinate reference system used (EPSG:4326). More information about any of the sites can be found on the LTER Site Profiles page on the LTER Network website (https://lternet.edu/site). This data product was made possible by the contributions of the Information Managers for the LTER sites, each of whom contributed their sites' boundaries.
more »
« less
- Award ID(s):
- 1929393
- PAR ID:
- 10518132
- Publisher / Repository:
- Environmental Data Initiative
- Date Published:
- Subject(s) / Keyword(s):
- Long-Term Ecological Research Network site boundaries
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ecosystems across the United States are changing in complex ways that are difficult to predict. Coordinated long‐term research and analysis are required to assess how these changes will affect a diverse array of ecosystem services. This paper is part of a series that is a product of a synthesis effort of the U.S. National Science Foundation’s Long Term Ecological Research (LTER) network. This effort revealed that each LTER site had at least one compelling scientific case study about “what their site would look like” in 50 or 100 yr. As the site results were prepared, themes emerged, and the case studies were grouped into separate papers along five themes: state change, connectivity, resilience, time lags, and cascading effects and compiled into this special issue. This paper addresses the time lags theme with five examples from diverse biomes including tundra (Arctic), coastal upwelling (California Current Ecosystem), montane forests (Coweeta), and Everglades freshwater and coastal wetlands (Florida Coastal Everglades) LTER sites. Its objective is to demonstrate the importance of different types of time lags, in different kinds of ecosystems, as drivers of ecosystem structure and function and how these can effectively be addressed with long‐term studies. The concept that slow, interactive, compounded changes can have dramatic effects on ecosystem structure, function, services, and future scenarios is apparent in many systems, but they are difficult to quantify and predict. The case studies presented here illustrate the expanding scope of thinking about time lags within the LTER network and beyond. Specifically, they examine what variables are best indicators of lagged changes in arctic tundra, how progressive ocean warming can have profound effects on zooplankton and phytoplankton in waters off the California coast, how a series of species changes over many decades can affect Eastern deciduous forests, and how infrequent, extreme cold spells and storms can have enduring effects on fish populations and wetland vegetation along the Southeast coast and the Gulf of Mexico. The case studies highlight the need for a diverse set of LTER (and other research networks) sites to sort out the multiple components of time lag effects in ecosystems.more » « less
-
Dataset Abstract This dataset includes information about the LTER main site treatments, agronomic practices carried out on the treatments and approved site use requests. Most long-term hypotheses associated with the KBS LTER site are being tested within the context of the main cropping systems study. This study was established on a 48 ha area on which a series of 7 different cropping systems were established in spring 1988, each replicated in one of 6 ha blocks. An eighth never-tilled successional treatment, is located 200 m off-site, replicated as four 0.06 ha plots. Cropping systems include the following treatments: T1. Conventional: standard chemical input corn/soybean/wheat rotation conventionally tilled (corn/soybean prior to 1992) T2. No-till: standard chemical input corn/soybean/wheat rotation no-tilled (corn/soybean prior to 1992) T3. Reduced input: low chemical input corn/soybean/wheat rotation conventionally tilled (ridge till prior to 1994) T4. Biologically based: zero chemical input corn/soybean wheat rotation conventionally tilled (ridge till prior to 1994) T5. Poplar: Populus clones on short-rotation (6-7 year) harvest cycle T6. Alfalfa: continuous alfalfa, replanted every 6-7 years (converted to switchgrass in 2018) T7. Early successional community: historically tilled soil T8. Mown grassland community: never-tilled soil. For specific crops in a given year see the Annual Crops Summary Table. In 1993 a series of forest sites were added to the main cropping system study to provide long-term reference points and to allow hypotheses related to substrate diversity to be tested. These include: TCF. Coniferous forest: three conifer plantations, 40-60 years old TDF. Decidious forest: three deciduous forest stands, two old-growth and one 40-60 years post-cutting TSF. Mid-successional forest: three old-field (mid-successional) sites 40+ years post-abandonment. All share a soil series with the main cropping system treatments, and are within 5 km of all other sites. For each system (and for a number of microplot treatments nested within the main treatment plots) the following baseline variates are being measured (described in greater detail in other data set descriptors): plant characteristics, including species distributions and abundances, net aboveground productivity by functional group (crop vs. non dominant biomass, selected non dominant biomass), economic yields, tissue C and N contents, seed bank composition; soil chemical and physical characteristics, including soil moisture, pH, inorganic N and P pools, total C, N, and P pools, bulk density; soil biological characteristics, including microbial biomass C and N, N mineralization rates (buried bags), microbial populations, invertebrate populations; and insect and pathogen dynamics, including distributions and abundances of major insect pests and predators and of Fusarium pathogens. original data source http://lter.kbs.msu.edu/datasets/7more » « less
-
Abstract Ecosystems are changing in complex and unpredictable ways, and analysis of these changes is facilitated by coordinated, long‐term research. Meeting diverse societal needs requires an understanding of what populations and communities will be dominant in 20, 50, and 100 yr. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of populations and communities. This analysis revealed that each LTER site had at least one compelling story about what their site would look like in 50 or 100 yr. As the stories were prepared, themes emerged, and the stories were grouped into papers along five themes for this special issue: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the resilience theme and includes stories from the Baltimore (urban), Hubbard Brook (northern hardwood forest), Andrews (temperate rain forest), Moorea (coral reef), Cedar Creek (grassland), and North Temperate Lakes (lakes) sites. The concept of resilience (the capacity of a system to maintain structure and processes in the face of disturbance) is an old topic that has seen a resurgence of interest as the nature and extent of global environmental change have intensified. The stories we present here show the power of long‐term manipulation experiments (Cedar Creek), the value of long‐term monitoring of forests in both natural (Andrews, Hubbard Brook) and urban settings (Baltimore), and insights that can be gained from modeling and/or experimental approaches paired with long‐term observations (North Temperate Lakes, Moorea). Three main conclusions emerge from the analysis: (1) Resilience research has matured over the past 40 yr of the LTER program; (2) there are many examples of high resilience among the ecosystems in the LTER network; (3) there are also many warning signs of declining resilience of the ecosystems we study. These stories highlight the need for long‐term studies to address this complex topic and show how the diversity of sites within the LTER network facilitates the emergence of overarching concepts about this important driver of ecosystem structure, function, services, and futures.more » « less
-
Abstract Ecosystems across the United States are changing in complex and unpredictable ways and analysis of these changes requires coordinated, long‐term research. This paper is a product of a synthesis effort of the U.S. National Science Foundation funded Long‐Term Ecological Research (LTER) network addressing the LTER core research area of “populations and communities.” This analysis revealed that each LTER site had at least one compelling “story” about what their site would look like in 50–100 yr. As the stories were prepared, themes emerged, and the stories were group into papers along five themes: state change, connectivity, resilience, time lags, and cascading effects. This paper addresses the cascading effects theme and includes stories from the Bonanza Creek (boreal), Kellogg Biological Station (agricultural and freshwater), Palmer (Antarctica), and Harvard Forest (temperate forest) LTER sites. We define cascading effects very broadly to include a wide array of unforeseen chains of events that result from a variety of actions or changes in a system. While climate change is having important direct effects on boreal forests, indirect effects mediated by fire activity—severity, size, and return interval—have large cascading effects over the long term. In northeastern temperate forests, legacies of human management and disturbance affect the composition of current forests, which creates a cascade of effects that interact with the climate‐facilitated invasion of an exotic pest. In Antarctica, declining sea ice creates a cascade of effects including declines in Adèlie and increases in Gentoo penguins, changes in phytoplankton, and consequent changes in zooplankton populations. An invasion of an exotic species of lady beetle is likely to have important future effects on pest control and conservation of native species in agricultural landscapes. New studies of zebra mussels, a well‐studied invader, have established links between climate, the heat tolerance of the mussels, and harmful algal blooms. Collectively, these stories highlight the need for long‐term studies to sort out the complexities of different types of ecological cascades. The diversity of sites within the LTER network facilitates the emergence of overarching concepts about trophic interactions as an important driver of ecosystem structure, function, services, and futures.more » « less
An official website of the United States government
