skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Nonlocal Theory for Submerged Cantilever Beams Undergoing Torsional Vibrations
We propose a new theory for fluid–structure interactions of cantilever microbeams undergoing small amplitude vibrations in viscous fluids. The method is based on the concept of nonlocal modal hydrodynamic functions that accurately capture three-dimensional (3D) fluid loading on the structure. For short beams for which 3D effects become prominent, existing local theories based on two-dimensional (2D) fluid approximations are inadequate to predict the dynamic response. We discuss and compare model predictions in terms of frequency response functions, modal shapes, quality factors, and added mass ratios with the predictions of the local theory, and we validate our new model with experimental results.  more » « less
Award ID(s):
1847513
PAR ID:
10518138
Author(s) / Creator(s):
;
Publisher / Repository:
ASME
Date Published:
Journal Name:
ASME Letters in Dynamic Systems and Control
Volume:
3
Issue:
4
ISSN:
2689-6117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we introduce a new nonlocal modal hydrodynamic theory for fluid–structure interactions (FSI) of light, flexible cantilever beams and plates undergoing small amplitude vibrations in Newtonian, incompressible, viscous, heavy fluids otherwise at rest. For low aspect ratio flexible structures and high mode numbers, three dimensional (3D) and nonlocal fluid effects become prominent drivers of the coupled dynamics, to the point that existing local hydrodynamic theories based on two dimensional (2D) fluid approximations become inadequate to predict the system response. On the other hand, our approach is based on a rigorous, yet efficient, 3D treatment of the hydrodynamic loading on cantilevered thin structures. The off-line solution of the FSI problem results in the so-called nonlocal modal hydrodynamic function matrix, that is, the representation of the nonlocal hydrodynamic load operator on a basis formed by the structural modes. Our theory then integrates the nonlocal hydrodynamics within a fully coupled structural modal model in the frequency domain. We compare and discuss our theory predictions in terms of frequency response functions, mode shapes, hydrodynamic loads, quality factors, added mass ratios with the predictions of the classical local approaches, for different actuation scenarios, identifying the limitations of the hypotheses underlying existing treatments. Importantly, we also validate our new model with experiments conducted on flexible square plates. While computationally efficient, our fully coupled theory is exact up to numerical truncation and can bridge knowledge gaps in the design and analysis of FSI systems based on low aspect ratio flexible beams and plates. 
    more » « less
  2. Predicting the structural properties of water and simple fluids confined in nanometer scale pores and channels is essential in, for example, energy storage and biomolecular systems. Classical continuum theories fail to accurately capture the interfacial structure of fluids. In this work, we develop a deep learning-based quasi-continuum theory (DL-QT) to predict the concentration and potential profiles of a Lennard-Jones (LJ) fluid and water confined in a nanochannel. The deep learning model is built based on a convolutional encoder–decoder network (CED) and is applied for high-dimensional surrogate modeling to relate the fluid properties to the fluid–fluid potential. The CED model is then combined with the interatomic potential-based continuum theory to determine the concentration profiles of a confined LJ fluid and confined water. We show that the DL-QT model exhibits robust predictive performance for a confined LJ fluid under various thermodynamic states and for water confined in a nanochannel of different widths. The DL-QT model seamlessly connects molecular physics at the nanoscale with continuum theory by using a deep learning model. 
    more » « less
  3. Fluid–structure interaction (FSI) plays a significant role in the deformation of flapping insect wings. However, many current FSI models are high-order and rely on direct computational methods, thereby limiting parametric studies as well as insights into the physics governing wing dynamics. We develop a novel flapping wing FSI framework that accommodates general wing geometry and fluid loading. We use this framework to study the unilaterally coupled FSI of an idealized hawkmoth forewing considering two fluid models: Reynolds-averaged Navier–Stokes computational fluid dynamics (RANS CFD) and blade element theory (BET). We first compare aerodynamic modal forces estimated by the low-order BET model to those calculated via high fidelity RANS CFD. We find that for realistic flapping kinematics, BET estimates modal forces five orders of magnitude faster than CFD within reasonable accuracy. Over the range flapping kinematics considered, BET and CFD estimated modal forces vary maximally by 350% in magnitude and approximately π/2 radians in phase. The large reduction in computational time offered by BET facilitates high-dimensional parametric design of flapping-wing-based technologies. Next, we compare the contributions of aerodynamic and inertial forces to wing deformation. Under the unilateral coupling assumption, aerodynamic and inertial-elastic forces are on the same order of magnitude—however, inertial-elastic forces primarily excite the wing’s bending mode whereas aerodynamic forces primarily excite the wing’s torsional mode. This suggests that, via conscientious sensor placement and orientation, biological wings may be able to sense independently inertial and aerodynamic forces. 
    more » « less
  4. Flapping, flexible insect wings deform under inertial and fluid loading. Deformation influences aerodynamic force generation and sensorimotor control, and is thus important to insect flight mechanics. Conventional flapping wing fluid–structure interaction models provide detailed information about wing deformation and the surrounding flow structure, but are impractical in parameter studies due to their considerable computational demands. Here, we develop two quasi three-dimensional reduced-order models (ROMs) capable of describing the propulsive forces/moments and deformation profiles of flexible wings. The first is based on deformable blade element theory (DBET) and the second is based on the unsteady vortex lattice method (UVLM). Both rely on a modal-truncation based structural solver. We apply each model to estimate the aeromechanics of a thin, flapping flat plate with a rigid leading edge, and compare ROM findings to those produced by a coupled fluid dynamics/finite element computational solver. The ROMs predict wing deformation with good accuracy even for relatively large deformations of 25% of the chord length. Aerodynamic loading normal to the wing's rotation plane is well captured by the ROMs, though model errors are larger for in-plane loading. We then perform a parameter sweep to understand how wing flexibility and mass affect peak deflection, mean lift and average power. All models indicate that flexible wings produce less lift but require lower average power to flap. Importantly, these studies highlight the computational efficiency of the ROMs—compared to the convention modeling approach, the UVLM and DBET ROMs solve 4 and 6 orders of magnitude faster, respectively.

     
    more » « less
  5. null (Ed.)
    Structural health monitoring of complex structures is often limited by restricted accessibility to locations of interest within the structure and availability of operational loads. In this work, a novel output-only virtual sensing scheme is proposed. This scheme involves the implementation of the modal expansion in an augmented Kalman filter. Performance of the proposed scheme is compared with two existing methods. Method 1 relies on a finite element model updating, batch data processing, and modal expansion (MUME) procedure. Method 2 employs a recursive sequential estimation algorithm, which feeds a substructure model of the instrumented system into an Augmented Kalman Filter (AKF). The new scheme referred to as Method 3 (ME-AKF), implements strain estimates generated via Modal Expansion into an AKF as virtual measurements. To demonstrate the applicability of the aforementioned methods, a rollercoaster connection was instrumented with accelerometers, strain rosettes, and an optical sensor. A comparison of estimated dynamic strain response at unmeasured locations using three alternative schemes is presented. Although acceleration measurements are used indirectly for model updating, the response-only methods presented in this research use only measurements from strain rosettes for strain history predictions and require no prior knowledge of input forces. Predicted strains using all methods are shown to sufficiently predict the measured strain time histories from a control location and lie within a 95% confidence interval calculated based on modal expansion equations. In addition, the proposed ME-AKF method shows improvement in strain predictions at unmeasured locations without the necessity of batch data processing. The proposed scheme shows high potential for real-time dynamic estimation of the strain and stress state of complex structures at unmeasured locations. 
    more » « less