skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cellular‐resolution gene expression mapping reveals organization in the head ganglia of the gastropod, Berghia stephanieae
Abstract Gastropod molluscs such asAplysia,Lymnaea, andTritoniahave been important for determining fundamental rules of motor control, learning, and memory because of their large, individually identifiable neurons. Yet only a small number of gastropod neurons have known molecular markers, limiting the ability to establish brain‐wide structure–function relations. Here we combine high‐throughput, single‐cell RNA sequencing with in situ hybridization chain reaction in the nudibranchBerghia stephanieaeto identify and visualize the expression of markers for cell types. Broad neuronal classes were characterized by genes associated with neurotransmitters, like acetylcholine, glutamate, serotonin, and GABA, as well as neuropeptides. These classes were subdivided by other genes including transcriptional regulators and unannotated genes. Marker genes expressed by neurons and glia formed discrete, previously unrecognized regions within and between ganglia. This study provides the foundation for understanding the fundamental cellular organization of gastropod nervous systems.  more » « less
Award ID(s):
2227963
PAR ID:
10518212
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Comparative Neurology
Volume:
532
Issue:
6
ISSN:
0021-9967
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Recent years have led to increased effort to describe and understand the peripheral nervous system and its influence on central mechanisms and behavior in gastropod molluscs. This study revealed that an antibody raised against keyhole limpet hemocyanin (KLH) cross‐reacts with an antigen(s) found extensively in both the central and the peripheral nervous systems ofBiomphalaria alexandrina. The results revealed KLH‐like immunoreactive (LIR) neurons in the cerebral, pedal, buccal, left pleural, right parietal, and visceral ganglion within the CNS with fibers projecting throughout all the peripheral nerves. Numerous KLH‐LIR peripheral sensory neurons located in the foot, lips, tentacles, mantle, esophagus, and penis exhibited a bipolar morphology with long tortuous dendrites. KLH‐LIR cells were also present in the eye and statocyst, thus suggesting the labeling of multiple sensory modalities/cell types. KLH‐LIR cells did not co‐localize with tyrosine hydroxylase (TH)‐LIR cells, which have previously been described in this and other gastropods. The results thus provide descriptions of thousands of peripheral sensory neurons, not previously described in detail. Future research should seek to pair sensory modalities with peripheral cell type and attempt to further elucidate the nature of KLH‐like reactivity. These findings also emphasize the need for caution when analyzing results obtained through use of antibodies raised against haptens conjugated to carrier proteins, suggesting the need for stringent controls to help limit potential confounds caused by cross‐reactivity. In addition, this study is the first to describe neuronal cross‐reactivity with KLH inBiomphalaria, which could provide a substrate for host‐parasite interactions with a parasitic trematode,Schistosoma. 
    more » « less
  2. Hydractiniais a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of twoHydractiniaspecies,Hydractinia symbiolongicarpusandHydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult maleH. symbiolongicarpusand identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed thatHydractinia’s i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given thatHydractiniahas a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate thatHydractinia’s stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources forHydractiniapresented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself. 
    more » « less
  3. Definition of cell classes across the tissues of living organisms is central in the analysis of growing atlases of single-cell RNA sequencing (scRNA-seq) data across biomedicine. Marker genes for cell classes are most often defined by differential expression (DE) methods that serially assess individual genes across landscapes of diverse cells. This serial approach has been extremely useful, but is limited because it ignores possible redundancy or complementarity across genes that can only be captured by analyzing multiple genes simultaneously. Interrogating binarized expression data, we aim to identify discriminating panels of genes that are specific to, not only enriched in, individual cell types. To efficiently explore the vast space of possible marker panels, leverage the large number of cells often sequenced, and overcome zero-inflation in scRNA-seq data, we propose viewing marker gene panel selection as a variation of the “minimal set-covering problem” in combinatorial optimization. Using scRNA-seq data from blood and brain tissue, we show that this new method, CellCover, performs as good or better than DE and other methods in defining cell-type discriminating gene panels, while reducing gene redundancy and capturing cell-class-specific signals that are distinct from those defined by DE methods. Transfer learning experiments across mouse, primate, and human data demonstrate that CellCover identifies markers of conserved cell classes in neocortical neurogenesis, as well as developmental progression in both progenitors and neurons. Exploring markers of human outer radial glia (oRG, or basal RG) across mammals, we show that transcriptomic elements of this key cell type in the expansion of the human cortex likely appeared in gliogenic precursors of the rodent before the full program emerged in neurogenic cells of the primate lineage. We have assembled the public datasets we use in this report within the NeMO Analytics multi-omic data exploration environment [1], where the expression of individual genes (NeMO: Individual genes in cortex and NeMO: Individual genes in blood) and marker gene panels (NeMO: Telley 3 CellCover Panels, NeMO: Telley 12 CellCover Panels, NeMO: Sorted Brain Cell CellCover Panels, and NeMO: Blood 34 CellCover Panels) can be freely explored without coding expertise. CellCover is available in CellCover R and CellCover Python. 
    more » « less
  4. Abstract Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7–14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2,PAX6,TMEM266,KCNIP4), the Bergmann glial cells (QK1,DAO), and the Purkinje cell layer (ARHGEF33,KIT,MX1,MYH10,PPP1R17,SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study. 
    more » « less
  5. Tissue development requires local and long-distance communication between cells. Cell ablation experiments have provided critical insights into the functions of specific cell types and the tissue surrounding the dead cells. In theDrosophilaneuromuscular system, ablation of motor neurons and muscles has revealed the roles of the ablated cells in axon pathfinding and circuit wiring. For example, when muscles are denervated due to laser ablation of their motor neuron inputs, they receive ectopic innervation from neighboring motor neurons. Here, we describe two methods of specific cell ablation. The first is a genetic ablation approach that usesGAL4(ideally expressed in a small subset of cells) to drive expression of cell death genesreaperandhead involution defective. The second method relies on reactive oxygen species produced by light activation of theArabidopsis-derived Singlet Oxygen Generator, miniSOG2, expressed in a subset of cells. For the latter, the precision stems from both theGAL4and the restricting of the blue-light stimulation area. 
    more » « less