skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coffea-Casa: Building composable analysis facilities for the HL-LHC
The large data volumes expected from the High Luminosity LHC (HL-LHC) present challenges to existing paradigms and facilities for end-user data analysis. Modern cyberinfrastructure tools provide a diverse set of services that can be composed into a system that provides physicists with powerful tools that give them straightforward access to large computing resources, with low barriers to entry. The Coffea-Casa analysis facility (AF) provides an environment for end users enabling the execution of increasingly complex analyses such as those demonstrated by the Analysis Grand Challenge (AGC) and capturing the features that physicists will need for the HL-LHC. We describe the development progress of the Coffea-Casa facility featuring its modularity while demonstrating the ability to port and customize the facility software stack to other locations. The facility also facilitates the support of batch systems while staying Kubernetes-native. We present the evolved architecture of the facility, such as the integration of advanced data delivery services (e.g. ServiceX) and making data caching services (e.g. XCache) available to end users of the facility. We also highlight the composability of modern cyberinfrastructure tools. To enable machine learning pipelines at coffee-casa analysis facilities, a set of industry ML solutions adopted for HEP columnar analysis were integrated on top of existing facility services. These services also feature transparent access for user workflows to GPUs available at a facility via inference servers while using Kubernetes as enabling technology.  more » « less
Award ID(s):
2209764
PAR ID:
10518267
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
De_Vita, R; Espinal, X; Laycock, P; Shadura, O
Publisher / Repository:
EDP Sciences
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
295
ISSN:
2100-014X
Page Range / eLocation ID:
07009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biscarat, C.; Campana, S.; Hegner, B.; Roiser, S.; Rovelli, C.I.; Stewart, G.A. (Ed.)
    Data analysis in HEP has often relied on batch systems and event loops; users are given a non-interactive interface to computing resources and consider data event-by-event. The “Coffea-casa” prototype analysis facility is an effort to provide users with alternate mechanisms to access computing resources and enable new programming paradigms. Instead of the command-line interface and asynchronous batch access, a notebook-based web interface and interactive computing is provided. Instead of writing event loops, the columnbased Coffea library is used. In this paper, we describe the architectural components of the facility, the services offered to end users, and how it integrates into a larger ecosystem for data access and authentication. 
    more » « less
  2. Large scientific facilities are unique and complex infrastructures that have become fundamental instruments for enabling high quality, world-leading research to tackle scientific problems at unprecedented scales. Cyberinfrastructure (CI) is an essential component of these facilities, providing the user community with access to data, data products, and services with the potential to transform data into knowledge. However, the timely evolution of the CI available at large facilities is challenging and can result in science communities requirements not being fully satisfied. Furthermore, integrating CI across multiple facilities as part of a scientific workflow is hard, resulting in data silos. In this paper, we explore how science gateways can provide improved user experiences and services that may not be offered at large facility datacenters. Using a science gateway supported by the Science Gateway Community Institute, which provides subscription-based delivery of streamed data and data products from the NSF Ocean Observatories Initiative (OOI), we propose a system that enables streaming-based capabilities and workflows using data from large facilities, such as the OOI, in a scalable manner. We leverage data infrastructure building blocks, such as the Virtual Data Collaboratory, which provides data and comput- ing capabilities in the continuum to efficiently and collaboratively integrate multiple data-centric CIs, build data-driven workflows, and connect large facilities data sources with NSF-funded CI, such as XSEDE. We also introduce architectural solutions for running these workflows using dynamically provisioned federated CI. 
    more » « less
  3. null (Ed.)
    One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D. 
    more » « less
  4. Abstract We present a scalable, cloud-based science platform solution designed to enable next-to-the-data analyses of terabyte-scale astronomical tabular data sets. The presented platform is built on Amazon Web Services (over Kubernetes and S3 abstraction layers), utilizes Apache Spark and the Astronomy eXtensions for Spark for parallel data analysis and manipulation, and provides the familiar JupyterHub web-accessible front end for user access. We outline the architecture of the analysis platform, provide implementation details and rationale for (and against) technology choices, verify scalability through strong and weak scaling tests, and demonstrate usability through an example science analysis of data from the Zwicky Transient Facility’s 1Bn+ light-curve catalog. Furthermore, we show how this system enables an end user to iteratively build analyses (in Python) that transparently scale processing with no need for end-user interaction. The system is designed to be deployable by astronomers with moderate cloud engineering knowledge, or (ideally) IT groups. Over the past 3 yr, it has been utilized to build science platforms for the DiRAC Institute, the ZTF partnership, the LSST Solar System Science Collaboration, and the LSST Interdisciplinary Network for Collaboration and Computing, as well as for numerous short-term events (with over 100 simultaneous users). In a live demo instance, the deployment scripts, source code, and cost calculators are accessible.44http://hub.astronomycommons.org/ 
    more » « less
  5. Given the highly empirical nature of research in cloud computing, networked systems, and related fields, testbeds play an important role in the research ecosystem. In this paper, we cover one such facility, CloudLab, which supports systems research by providing raw access to programmable hardware, enabling research at large scales, and creating as hared platform for repeatable research.We present our experiences designing CloudLab and operating it for four years, serving nearly 4,000 users who have run over 79,000 experiments on 2,250 servers, switches, and other pieces of datacenter equipment. From this experience,we draw lessons organized around two themes. The first set comes from analysis of data regarding the use of CloudLab:how users interact with it, what they use it for, and the implications for facility design and operation. Our second set of lessons comes from looking at the ways that algorithms used“under the hood,” such as resource allocation, have important—and sometimes unexpected—effects on user experience and behavior. These lessons can be of value to the designers and operators of IaaS facilities in general, systems testbeds in particular, and users who have a stake in understanding how these systems are built. 
    more » « less