skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on October 7, 2026

Title: Investigating Data Access Models for ATLAS: A Case Study with FABRIC Across Borders and ServiceX
This study explores enhancements in analysis speed, WAN bandwidth efficiency, and data storage management through an innovative data access strategy. The proposed model introduces specialized ‘delivery’ services for data preprocessing, which include filtering and reformatting tasks executed on dedicated hardware located alongside the data repositories at CERN’s Tier-0, Tier-1, or Tier-2 facilities. Positioned near the source storage, these services are crucial for limiting redundant data transfers and focus on sending only vital data to distant analysis sites, aiming to optimize network and storage use at those sites. Within the scope of the NSF-funded FABRIC Across Borders (FAB) initiative, we assess this model using an “in-network, edge” computing cluster at CERN, outfitted with substantial processing capabilities (CPU, GPU, and advanced network interfaces). This edge computing cluster features dedicated network peering arrangements that link CERN Tier-0, the FABRIC experimental network, and an analysis center at the University of Chicago, creating a solid foundation for our research. Central to our infrastructure is ServiceX, an R&D software project under the Data Organization, Management, and Access (DOMA) group of the Institute for Research and Innovation in Software for High Energy Physics - IRIS-HEP. ServiceX is a scalable filtering and reformatting service, designed to operate within a Kubernetes environment and deliver output to an S3 object store at an analysis facility. Our study assesses the impact of server-side delivery services in augmenting the existing HEP computing model, particularly evaluating their possible integration within the broader WAN infrastructure. This model could empower Tier-1 and Tier-2 centers to become efficient data distribution nodes, enabling a more cost-effective way to disseminate data to analysis sites and object stores, thereby improving data access and efficiency. This research is experimental and serves as a demonstrator of the capabilities and improvements that such integrated computing models could offer in the HL-LHC era.  more » « less
Award ID(s):
2115148 2029176
PAR ID:
10654897
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S
Publisher / Repository:
EPJ Web of Conferences
Date Published:
Journal Name:
EPJ Web of Conferences
Volume:
337
ISSN:
2100-014X
Page Range / eLocation ID:
01117
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)
    The ATLAS experiment is currently developing columnar analysis frameworks which leverage the Python data science ecosystem. We describe the construction and operation of the infrastructure necessary to support demonstrations of these frameworks, with a focus on those from IRIS-HEP. One such demonstrator aims to process the compact ATLAS data format PHYSLITE at rates exceeding 200 Gbps. Various access configurations and setups on different sites are explored, including direct access to a dCache storage system via Xrootd, the use of ServiceX, and the use of multiple XCache servers equipped with NVMe storage devices. Integral to this study was the analysis of network traffic and bottlenecks, worker node scheduling and disk configurations, and the performance of an S3 object store. The system’s overall performance was measured as the number of processing cores scaled to over 2,000 and the volume of data accessed in an interactive session approached 200 TB. The presentation will delve into the operational details and findings related to the physical infrastructure that underpins these demonstrators. 
    more » « less
  2. Szumlak, T; Rachwał, B; Dziurda, A; Schulz, M; vom_Bruch, D; Ellis, K; Hageboeck, S (Ed.)
    We explore the adoption of cloud-native tools and principles to forge flexible and scalable infrastructures, aimed at supporting analysis frameworks being developed for the ATLAS experiment in the High Luminosity Large Hadron Collider (HL-LHC) era. The project culminated in the creation of a federated platform, integrating Kubernetes clusters from various providers such as Tier-2 centers, Tier-3 centers, and from the IRIS-HEP Scalable Systems Laboratory, a National Science Foundation project. A unified interface was provided to streamline the management and scaling of containerized applications. Enhanced system scalability was achieved through integration with analysis facilities, enabling spillover of Jupyter/Binder notebooks and Dask workers to Tier-2 resources. We investigated flexible deployment options for a “stretched” (over the wide area network) cluster pattern, including a centralized “lights out management” model, remote administration of Kubernetes services, and a fully autonomous site-managed cluster approach, to accommodate varied operational and security requirements. The platform demonstrated its efficacy in multi-cluster demonstrators for low-latency analyses and advanced workflows with tools such as Coffea, ServiceX, Uproot and Dask, and RDataFrame, illustrating its ability to support various processing frameworks. The project also resulted in a robust user training infrastructure for ATLAS software and computing on-boarding events. 
    more » « less
  3. null (Ed.)
    One of the most costly factors in providing a global computing infrastructure such as the WLCG is the human effort in deployment, integration, and operation of the distributed services supporting collaborative computing, data sharing and delivery, and analysis of extreme scale datasets. Furthermore, the time required to roll out global software updates, introduce new service components, or prototype novel systems requiring coordinated deployments across multiple facilities is often increased by communication latencies, staff availability, and in many cases expertise required for operations of bespoke services. While the WLCG (and distributed systems implemented throughout HEP) is a global service platform, it lacks the capability and flexibility of a modern platform-as-a-service including continuous integration/continuous delivery (CI/CD) methods, development-operations capabilities (DevOps, where developers assume a more direct role in the actual production infrastructure), and automation. Most importantly, tooling which reduces required training, bespoke service expertise, and the operational effort throughout the infrastructure, most notably at the resource endpoints (sites), is entirely absent in the current model. In this paper, we explore ideas and questions around potential NoOps models in this context: what is realistic given organizational policies and constraints? How should operational responsibility be organized across teams and facilities? What are the technical gaps? What are the social and cybersecurity challenges? Conversely what advantages does a NoOps model deliver for innovation and for accelerating the pace of delivery of new services needed for the HL-LHC era? We will describe initial work along these lines in the context of providing a data delivery network supporting IRIS-HEP DOMA R&D. 
    more » « less
  4. De_Vita, R; Espinal, X; Laycock, P; Shadura, O (Ed.)
    The large data volumes expected from the High Luminosity LHC (HL-LHC) present challenges to existing paradigms and facilities for end-user data analysis. Modern cyberinfrastructure tools provide a diverse set of services that can be composed into a system that provides physicists with powerful tools that give them straightforward access to large computing resources, with low barriers to entry. The Coffea-Casa analysis facility (AF) provides an environment for end users enabling the execution of increasingly complex analyses such as those demonstrated by the Analysis Grand Challenge (AGC) and capturing the features that physicists will need for the HL-LHC. We describe the development progress of the Coffea-Casa facility featuring its modularity while demonstrating the ability to port and customize the facility software stack to other locations. The facility also facilitates the support of batch systems while staying Kubernetes-native. We present the evolved architecture of the facility, such as the integration of advanced data delivery services (e.g. ServiceX) and making data caching services (e.g. XCache) available to end users of the facility. We also highlight the composability of modern cyberinfrastructure tools. To enable machine learning pipelines at coffee-casa analysis facilities, a set of industry ML solutions adopted for HEP columnar analysis were integrated on top of existing facility services. These services also feature transparent access for user workflows to GPUs available at a facility via inference servers while using Kubernetes as enabling technology. 
    more » « less
  5. null (Ed.)
    The experiments at the Large Hadron Collider (LHC) rely upon a complex distributed computing infrastructure (WLCG) consisting of hundreds of individual sites worldwide at universities and national laboratories, providing about half a billion computing job slots and an exabyte of storage interconnected through high speed networks. Wide Area Networking (WAN) is one of the three pillars (together with computational resources and storage) of LHC computing. More than 5 PB/day are transferred between WLCG sites. Monitoring is one of the crucial components of WAN and experiments operations. In the past years all experiments have invested significant effort to improve monitoring and integrate networking information with data management and workload management systems. All WLCG sites are equipped with perfSONAR servers to collect a wide range of network metrics. We will present the latest development to provide the 3D force directed graph visualization for data collected by perfSONAR. The visualization package allows site admins, network engineers, scientists and network researchers to better understand the topology of our Research and Education networks and it provides the ability to identify nonreliable or/and nonoptimal network paths, such as those with routing loops or rapidly changing routes. 
    more » « less