skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extracellular Vesicle-Mediated Modulation of Stem-like Phenotype in Breast Cancer Cells under Fluid Shear Stress
Circulating tumor cells (CTCs) are some of the key culprits that cause cancer metastasis and metastasis-related deaths. These cells exist in a dynamic microenvironment where they experience fluid shear stress (FSS), and the CTCs that survive FSS are considered to be highly metastatic and stem cell-like. Biophysical stresses such as FSS are also known to cause the production of extracellular vesicles (EVs) that can facilitate cell-cell communication by carrying biomolecular cargos such as microRNAs. Here, we hypothesized that physiological FSS will impact the yield of EV production, and that these EVs will have biomolecules that transform the recipient cells. The EVs were isolated using direct flow filtration with and without FSS from the MDA-MB-231 cancer cell line, and the expression of key stemness-related genes and microRNAs was characterized. There was a significantly increased yield of EVs under FSS. These EVs also contained significantly increased levels of miR-21, which was previously implicated to promote metastatic progression and chemotherapeutic resistance. When these EVs from FSS were introduced to MCF-7 cancer cells, the recipient cells had a significant increase in their stem-like gene expression and CD44+/CD24− cancer stem cell-like subpopulation. There was also a correlated increased proliferation along with an increased ATP production. Together, these findings indicate that the presence of physiological FSS can directly influence the EVs’ production and their contents, and that the EV-mediated transfer of miR-21 can have an important role in FSS-existing contexts, such as in cancer metastasis.  more » « less
Award ID(s):
2000053 2029387
PAR ID:
10518298
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Biomolecules
Volume:
14
Issue:
7
ISSN:
2218-273X
Page Range / eLocation ID:
757
Subject(s) / Keyword(s):
extracellular vesicles breast cancer metastasis cancer stem cells fluid shear stress
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tumor-initiating cells with reprogramming plasticity or stem-progenitor cell properties (stemness) are thought to be essential for cancer development and metastatic regeneration in many cancers; however, elucidation of the underlying molecular network and pathways remains demanding. Combining machine learning and experimental investigation, here we report CD81, a tetraspanin transmembrane protein known to be enriched in extracellular vesicles (EVs), as a newly identified driver of breast cancer stemness and metastasis. Using protein structure modeling and interface prediction-guided mutagenesis, we demonstrate that membrane CD81 interacts with CD44 through their extracellular regions in promoting tumor cell cluster formation and lung metastasis of triple negative breast cancer (TNBC) in human and mouse models. In-depth global and phosphoproteomic analyses of tumor cells deficient with CD81 or CD44 unveils endocytosis-related pathway alterations, leading to further identification of a quality-keeping role of CD44 and CD81 in EV secretion as well as in EV-associated stemness-promoting function. CD81 is coexpressed along with CD44 in human circulating tumor cells (CTCs) and enriched in clustered CTCs that promote cancer stemness and metastasis, supporting the clinical significance of CD81 in association with patient outcomes. Our study highlights machine learning as a powerful tool in facilitating the molecular understanding of new molecular targets in regulating stemness and metastasis of TNBC. 
    more » « less
  2. Abstract Chinese hamster ovary (CHO) cells release and exchange large quantities of extracellular vesicles (EVs). EVs are highly enriched in microRNAs (miRs, or miRNAs), which are responsible for most of their biological effects. We have recently shown that the miR content of CHO EVs varies significantly under culture stress conditions. Here, we provide a novel stoichiometric (“per‐EV”) quantification of miR and protein levels in large CHO EVs produced under ammonia, lactate, osmotic, and age‐related stress. Each stress resulted in distinct EV miR levels, with selective miR loading by parent cells. Our data provide a proof of concept for the use of CHO EV cargo as a diagnostic tool for identifying culture stress. We also tested the impact of three select miRs (let‐7a, miR‐21, and miR‐92a) on CHO cell growth and viability. Let‐7a—abundant in CHO EVs from stressed cultures—reduced CHO cell viability, while miR‐92a—abundant in CHO EVs from unstressed cultures—promoted cell survival. Overexpression of miR‐21 had a slight detrimental impact on CHO cell growth and viability during late exponential‐phase culture, an unexpected result based on the reported antiapoptotic role of miR‐21 in other mammalian cell lines. These findings provide novel relationships between CHO EV cargo and cell phenotype, suggesting that CHO EVs may exert both pro‐ and antiapoptotic effects on target cells, depending on the conditions under which they were produced. 
    more » « less
  3. Extracellular vesicles (EVs) contribute to a variety of signaling processes and the overall physiological and pathological states of stem cells and tissues. Human induced pluripotent stem cells (hiPSCs) have unique characteristics that can mimic embryonic tissue development. There is growing interest in the use of EVs derived from hiPSCs as therapeutics, biomarkers, and drug delivery vehicles. However, little is known about the characteristics of EVs secreted by hiPSCs and paracrine signaling during tissue morphogenesis and lineage specification. Methods: In this study, the physical and biological properties of EVs isolated from hiPSC-derived neural progenitors (ectoderm), hiPSC-derived cardiac cells (mesoderm), and the undifferentiated hiPSCs (healthy iPSK3 and Alzheimer’s-associated SY-UBH lines) were analyzed. Results: Nanoparticle tracking analysis and electron microscopy results indicate that hiPSC-derived EVs have an average size of 100–250 nm. Immunoblot analyses confirmed the enrichment of exosomal markers Alix, CD63, TSG101, and Hsc70 in the purified EV preparations. MicroRNAs including miR-133, miR-155, miR-221, and miR-34a were differently expressed in the EVs isolated from distinct hiPSC lineages. Treatment of cortical spheroids with hiPSC-EVs in vitro resulted in enhanced cell proliferation (indicated by BrdU+ cells) and axonal growth (indicated by β-tubulin III staining). Furthermore, hiPSC-derived EVs exhibited neural protective abilities in Aβ42 oligomer-treated cultures, enhancing cell viability and reducing oxidative stress. Our results demonstrate that the paracrine signaling provided by tissue context-dependent EVs derived from hiPSCs elicit distinct responses to impact the physiological state of cortical spheroids. Overall, this study advances our understanding of cell‒cell communication in the stem cell microenvironment and provides possible therapeutic options for treating neural degeneration. 
    more » « less
  4. null (Ed.)
    We demonstrate a label free and high-throughput microbubble-based acoustic microstreaming technique to isolate rare circulating cells such as circulating cancer associated fibroblasts (cCAFs) in addition to circulating tumor cells (CTCs) and immune cells ( i.e. leukocytes) from clinically diagnosed patients with a capture efficiency of 94% while preserving cell functional integrity within 8 minutes. The microfluidic device is self-pumping and was optimized to increase flow rate and achieve near perfect capturing of rare cells enabled by having a trapping capacity above the acoustic vortex saturation concentration threshold. Our approach enables rapid isolation of CTCs, cCAFs and their associated clusters from blood samples of cancer patients at different stages. By examining the combined role of cCAFs and CTCs in early cancer onset and metastasis progression, the device accurately diagnoses both cancer and the metastatic propensity of breast cancer patients. This was confirmed by flow cytometry where we observed that metastatic breast cancer blood samples had significantly higher percentage of exhausted CD8 + T cells expressing programmed cell death protein 1 (PD1), higher number of CD4 + T regulatory cells and T helper cells. We show for the first time that our lateral cavity acoustic transducers (LCATs)-based approach can thus be developed into a metastatic propensity assay for clinical usage by elucidating cancer immunological responses and the complex relationships between CTCs and its companion tumor microenvironment. 
    more » « less
  5. Abstract The principal cause of death in cancer patients is metastasis, which remains an unresolved problem. Conventionally, metastatic dissemination is linked to actomyosin‐driven cell locomotion. However, the locomotion of cancer cells often does not strictly line up with the measured actomyosin forces. Here, a complementary mechanism of metastatic locomotion powered by dynein‐generated forces is identified. These forces arise within a non‐stretchable microtubule network and drive persistent contact guidance of migrating cancer cells along the biomimetic collagen fibers. It is also shown that the dynein‐powered locomotion becomes indispensable during invasive 3D migration within a tissue‐like luminal network formed by spatially confining granular hydrogel scaffolds (GHS) made up of microscale hydrogel particles (microgels). These results indicate that the complementary motricity mediated by dynein is always necessary and, in certain instances, sufficient for disseminating metastatic breast cancer cells. These findings advance the fundamental understanding of cell locomotion mechanisms and expand the spectrum of clinical targets against metastasis. 
    more » « less