Abstract Decades of research have illuminated the underlying ingredients that determine the scope of evolutionary responses to climate change. The field of evolutionary biology therefore stands ready to take what it has learned about influences upon the rate of adaptive evolution—such as population demography, generation time, and standing genetic variation—and apply it to assess if and how populations can evolve fast enough to “keep pace” with climate change. Here, our review highlights what the field of evolutionary biology can contribute and what it still needs to learn to provide more mechanistic predictions of the winners and losers of climate change. We begin by developing broad predictions for contemporary evolution to climate change based on theory. We then discuss methods for assessing climate‐driven contemporary evolution, including quantitative genetic studies, experimental evolution, and space‐for‐time substitutions. After providing this mechanism‐focused overview of both the evidence for evolutionary responses to climate change and more specifically, evolving to keep pace with climate change, we next consider the factors that limit actual evolutionary responses. In this context, we consider the dual role of phenotypic plasticity in facilitating but also impeding evolutionary change. Finally, we detail how a deeper consideration of evolutionary constraints can improve forecasts of responses to climate change and therefore also inform conservation and management decisions. This article is categorized under:Climate, Ecology, and Conservation > Observed Ecological ChangesClimate, Ecology, and Conservation > Extinction RiskAssessing Impacts of Climate Change > Evaluating Future Impacts of Climate Change 
                        more » 
                        « less   
                    
                            
                            Experimental evolution of dispersal: Unifying theory, experiments and natural systems
                        
                    
    
            Abstract Dispersal is a central life history trait that affects the ecological and evolutionary dynamics of populations and communities. The recent use of experimental evolution for the study of dispersal is a promising avenue for demonstrating valuable proofs of concept, bringing insight into alternative dispersal strategies and trade‐offs, and testing the repeatability of evolutionary outcomes.Practical constraints restrict experimental evolution studies of dispersal to a set of typically small, short‐lived organisms reared in artificial laboratory conditions. Here, we argue that despite these restrictions, inferences from these studies can reinforce links between theoretical predictions and empirical observations and advance our understanding of the eco‐evolutionary consequences of dispersal.We illustrate how applying an integrative framework of theory, experimental evolution and natural systems can improve our understanding of dispersal evolution under more complex and realistic biological scenarios, such as the role of biotic interactions and complex dispersal syndromes. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2247042
- PAR ID:
- 10518331
- Publisher / Repository:
- Journal of Animal Ecology
- Date Published:
- Journal Name:
- Journal of Animal Ecology
- Volume:
- 92
- Issue:
- 6
- ISSN:
- 0021-8790
- Page Range / eLocation ID:
- 1113 to 1123
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Summary Predicting the fate of coastal marshes requires understanding how plants respond to rapid environmental change. Environmental change can elicit shifts in trait variation attributable to phenotypic plasticity and act as selective agents to shift trait means, resulting in rapid evolution. Comparably, less is known about the potential for responses to reflect the evolution of trait plasticity.Here, we assessed the relative magnitude of eco‐evolutionary responses to interacting global change factors using a multifactorial experiment. We exposed replicates of 32Schoenoplectus americanusgenotypes ‘resurrected’ from century‐long, soil‐stored seed banks to ambient or elevated CO2, varying levels of inundation, and the presence of a competing marsh grass, across two sites with different salinities.Comparisons of responses to global change factors among age cohorts and across provenances indicated that plasticity has evolved in five of the seven traits measured. Accounting for evolutionary factors (i.e. evolution and sources of heritable variation) in statistical models explained an additional 9–31% of trait variation.Our findings indicate that evolutionary factors mediate ecological responses to environmental change. The magnitude of evolutionary change in plant traits over the last century suggests that evolution could play a role in pacing future ecosystem response to environmental change.more » « less
- 
            Summary Karyotypes provide key cytogenetic information on the phylogenetic relationships and evolutionary origins in related eukaryotic species. Despite our knowledge of the chromosome numbers of sugarcane and its wild relatives, the chromosome composition and evolution among the species in theSaccharumcomplex have been elusive owing to the complex polyploidy and the large numbers of chromosomes of these species.Oligonucleotide‐based chromosome painting has become a powerful tool of cytogenetic studies especially for plant species with large numbers of chromosomes. We developed oligo‐based chromosome painting probes for all 10 chromosomes inSaccharum officinarum(2n = 8x = 80). The 10 painting probes generated robust fluorescencein situhybridization signals in all plant species within theSaccharumcomplex, including species in the generaSaccharum,Miscanthus,NarengaandErianthus.We conducted comparative chromosome analysis using the same set of probes among species from four different genera within theSaccharumcomplex. Excitingly, we discovered several novel cytotypes and chromosome rearrangements in these species.We discovered that fusion from two different chromosomes is a common type of chromosome rearrangement associated with the species in theSaccharumcomplex. Such fusion events changed the basic chromosome number and resulted in distinct allopolyploids in theSaccharumcomplex.more » « less
- 
            Abstract Most studies on the evolution of migration focus on food, mates and/or climate as factors influencing these movements, whereas negative species interactions such as predators, parasites and pathogens are often ignored. Although infection and its associated costs clearly have the potential to influence migration, thoroughly studying these interactions is challenging without a solid theoretical framework from which to develop testable predictions in natural systems.Here, we aim to understand when parasites favour the evolution of migration.We develop a general model which enables us to explore a broad range of biological conditions and to capture population and infection dynamics over both ecological and evolutionary time‐scales.We show that when migration evolves depends on whether the costs of migration and infection are paid in reduced fecundity or survival. Also important are the parasite transmission mode and spatiotemporal dynamics of infection and recovery (if it occurs). Finally, we find that partial migration (where only a fraction of the population migrates) can evolve but only when parasite transmission is density‐dependent.Our results highlight the critical, if overlooked, role of parasites in shaping long‐distance movement patterns, and suggest that infection should be considered alongside more traditional drivers of migration in both empirical and theoretical studies.more » « less
- 
            Abstract Floral microbes, including bacteria and fungi, alter nectar quality, thus changing pollinator visitation. Conversely, pollinator visitation can change the floral microbial community.Most studies on dispersal of floral microbes have focused on bees, ants or hummingbirds, yet Lepidoptera are important pollinators.We asked (a) where are microbes present on the butterfly body, (b) do butterflies transfer microbes while foraging, and (c) how does butterfly foraging affect microbial abundance on different floret structures.The tarsi and proboscis had significantly more microbes than the thorax in wild‐caughtGlaucopsyche lygdamus(Lepidoptera: Lycaenidae) andSpeyeria mormonia(Lepidoptera: Nymphalidae).Glaucopsyche lygdamus, a smaller‐bodied species, had fewer microbes thanS. mormonia.As a marker for microbes, we used a bacterium (Rhodococcus fascians,near NCBI Y11196) isolated from aS. mormoniathat was foraging for nectar, and examined its dispersal byG. lygdamusandS. mormoniavisiting florets ofPyrrocoma crocea(Asteraceae). Microbial dispersal among florets correlated positively with bacterial abundance in the donor floret. Dispersal also depended on butterfly species, age, and bacterial load carried by the butterfly.Recipient florets had less bacteria than donor florets. The nectaries had more bacteria than the anthers or the stigmas, while anthers and stigmas did not differ from each other. There was no differential transmission among floral organs.Lepidoptera thus act as vectors of floral microbes. Including Lepidoptera is thus crucial to an understanding of plant–pollinator–microbe interactions. Future studies should consider the role of vectored microbes in lepidopteran ecology and fitness.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    