skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Gamma -Convergence of an Ambrosio-Tortorelli Approximation Scheme for Image Segmentation
Given an image u_0, the aim of minimising the Mumford-Shah functional is to find a decomposition of the image domain into sub-domains and a piecewise smooth approximation u of u_0 such that u varies smoothly within each sub-domain. Since the Mumford-Shah functional is highly non- smooth, regularizations such as the Ambrosio-Tortorelli approximation can be considered, which is one of the most computationally efficient approximations of the Mumford-Shah functional for image segmentation. While very impressive numerical results have been achieved in a large range of applications when minimising the functional, no analytical results are currently available for minimizers of the functional in the piece- wise smooth setting, and this is the goal of this work. Our main result is the Γ-convergence of the Ambrosio-Tortorelli approximation of the Mumford-Shah functional for piecewise smooth approximations. This requires the introduction of an appropriate function space. As a consequence of our Gamma-convergence result, we can infer the convergence of minimizers of the respective functionals.  more » « less
Award ID(s):
2205627
PAR ID:
10518423
Author(s) / Creator(s):
; ; ;
Editor(s):
Demeter, Ciprian
Publisher / Repository:
Indiana University
Date Published:
Journal Name:
Indiana University mathematics journal
Volume:
73
Issue:
1
ISSN:
1943-5258
Page Range / eLocation ID:
189-230
Subject(s) / Keyword(s):
Gamma-convergence Ambrosio-Tortorelli functional image segmentation
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, we aim to segment an image degraded by blur and Poisson noise. We adopt a smoothing-and-thresholding (SaT) segmentation framework that finds a piecewise-smooth solution, followed by k -means clustering to segment the image. Specifically for the image smoothing step, we replace the least-squares fidelity for Gaussian noise in the Mumford-Shah model with a maximum posterior (MAP) term to deal with Poisson noise and we incorporate the weighted difference of anisotropic and isotropic total variation (AITV) as a regularization to promote the sparsity of image gradients. For such a nonconvex model, we develop a specific splitting scheme and utilize a proximal operator to apply the alternating direction method of multipliers (ADMM). Convergence analysis is provided to validate the efficacy of the ADMM scheme. Numerical experiments on various segmentation scenarios (grayscale/color and multiphase) showcase that our proposed method outperforms a number of segmentation methods, including the original SaT. 
    more » « less
  2. Abstract We present the first a priori error analysis of a new method proposed in Cockburn & Wang (2017, Adjoint-based, superconvergent Galerkin approximations of linear functionals. J. Comput. Sci., 73, 644–666), for computing adjoint-based, super-convergent Galerkin approximations of linear functionals. If $J(u)$ is a smooth linear functional, where $$u$$ is the solution of a steady-state diffusion problem, the standard approximation $$J(u_h)$$ converges with order $$h^{2k+1}$$, where $$u_h$$ is the Hybridizable Discontinuous Galerkin approximation to $$u$$ with polynomials of degree $k>0$. In contrast, numerical experiments show that the new method provides an approximation that converges with order $$h^{4k}$$, and can be computed by only using twice the computational effort needed to compute $$J(u_h)$$. Here, we put these experimental results in firm mathematical ground. We also display numerical experiments devised to explore the convergence properties of the method in cases not covered by the theory, in particular, when the solution $$u$$ or the functional $$J(\cdot )$$ are not very smooth. We end by indicating how to extend these results to the case of general Galerkin methods. 
    more » « less
  3. Positron emission tomography (PET) is traditionally modeled as discrete systems. Such models may be viewed as piecewise constant approximations of the underlying continuous model for the physical processes and geometry of the PET imaging. Due to the low accuracy of piecewise constant approximations, discrete models introduce an irreducible modeling error which fundamentally limits the quality of reconstructed images. To address this bottleneck, we propose an integral equation model for the PET imaging based on the physical and geometrical considerations, which describes accurately the true coincidences. We show that the proposed integral equation model is equivalent to the existing idealized model in terms of line integrals which is accurate but not suitable for numerical approximation. The proposed model allows us to discretize it using higher accuracy approximation methods. In particular, we discretize the integral equation by using the collocation principle with piecewise linear polynomials. The discretization leads to new ill-conditioned discrete systems for the PET reconstruction, which are further regularized by a novel wavelet-based regularizer. The resulting non-smooth optimization problem is then solved by a preconditioned proximity fixed-point algorithm. Convergence of the algorithm is established for a range of parameters involved in the algorithm. The proposed integral equation model combined with the discretization, regularization, and optimization algorithm provides a new PET image reconstruction method. Numerical results reveal that the proposed model substantially outperforms the conventional discrete model in terms of the consistency to simulated projection data and reconstructed image quality. This indicates that the proposed integral equation model with appropriate discretization and regularizer can significantly reduce modeling errors and suppress noise, which leads to improved image quality and projection data estimation. 
    more » « less
  4. null (Ed.)
    Instance segmentation, which seeks to obtain both class and instance labels for each pixel in the input image, is a challenging task in computer vision. State-ofthe-art algorithms often employ a search-based strategy, which first divides the output image with a regular grid and generate proposals at each grid cell, then the proposals are classified and boundaries refined. In this paper, we propose a novel algorithm that directly utilizes a fully convolutional network (FCN) to predict instance labels. Specifically, we propose a variational relaxation of instance segmentation as minimizing an optimization functional for a piecewise-constant segmentation problem, which can be used to train an FCN end-to-end. It extends the classical Mumford-Shah variational segmentation algorithm to be able to handle the permutation-invariant ground truth in instance segmentation. Experiments on PASCAL VOC 2012 and the MSCOCO 2017 dataset show that the proposed approach efficiently tackles the instance segmentation task. The source code and trained models are released at https://github.com/jia2lin3yuan1/2020-instanceSeg. 
    more » « less
  5. Abstract We construct and analyse finite element approximations of the Einstein tensor in dimension $$N \ge 3$$. We focus on the setting where a smooth Riemannian metric tensor $$g$$ on a polyhedral domain $$\varOmega \subset \mathbb{R}^{N}$$ has been approximated by a piecewise polynomial metric $$g_{h}$$ on a simplicial triangulation $$\mathcal{T}$$ of $$\varOmega $$ having maximum element diameter $$h$$. We assume that $$g_{h}$$ possesses single-valued tangential–tangential components on every codimension-$$1$$ simplex in $$\mathcal{T}$$. Such a metric is not classically differentiable in general, but it turns out that one can still attribute meaning to its Einstein curvature in a distributional sense. We study the convergence of the distributional Einstein curvature of $$g_{h}$$ to the Einstein curvature of $$g$$ under refinement of the triangulation. We show that in the $$H^{-2}(\varOmega )$$-norm this convergence takes place at a rate of $$O(h^{r+1})$$ when $$g_{h}$$ is an optimal-order interpolant of $$g$$ that is piecewise polynomial of degree $$r \ge 1$$. We provide numerical evidence to support this claim. In the process of proving our convergence results we derive a few formulas for the evolution of certain geometric quantities under deformations of the metric. 
    more » « less