skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2205627

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Morel, Jean Michel (Ed.)
    Due to their ability to handle discontinuous images while having a well-understood behavior, regularizations with total variation (TV) and total generalized variation (TGV) are some of the best-known methods in image denoising. However, like other variational models including a fidelity term, they crucially depend on the choice of their tuning parameters. A remedy is to choose these automatically through multilevel approaches, for example by optimizing performance on noisy/clean image pairs. In this work, we consider such methods with space-dependent parameters which are piecewise constant on dyadic grids, with the grid itself being part of the minimization. We prove existence of minimizers for fixed discontinuous parameters under mild assumptions on the data, which lead to existence of finite optimal partitions. We further establish that these assumptions are equivalent to the commonly used box constraints on the parameters. On the numerical side, we consider a simple subdivision scheme for optimal partitions built on top of any other bilevel optimization method for scalar parameters, and demonstrate its improved performance on some representative test images when compared with constant optimized parameters. 
    more » « less
    Free, publicly-accessible full text available June 8, 2026
  2. Demeter, Ciprian (Ed.)
    Given an image u_0, the aim of minimising the Mumford-Shah functional is to find a decomposition of the image domain into sub-domains and a piecewise smooth approximation u of u_0 such that u varies smoothly within each sub-domain. Since the Mumford-Shah functional is highly non- smooth, regularizations such as the Ambrosio-Tortorelli approximation can be considered, which is one of the most computationally efficient approximations of the Mumford-Shah functional for image segmentation. While very impressive numerical results have been achieved in a large range of applications when minimising the functional, no analytical results are currently available for minimizers of the functional in the piece- wise smooth setting, and this is the goal of this work. Our main result is the Γ-convergence of the Ambrosio-Tortorelli approximation of the Mumford-Shah functional for piecewise smooth approximations. This requires the introduction of an appropriate function space. As a consequence of our Gamma-convergence result, we can infer the convergence of minimizers of the respective functionals. 
    more » « less