skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analyzing Generalization of Neural Networks through Loss Path Kernels
Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments.  more » « less
Award ID(s):
2107189
PAR ID:
10518466
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NeurIPS 2023
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime, where the networks' biases are initialized to some constant rather than zero. We prove that under such initialization, the neural network will have sparse activation throughout the entire training process, which enables fast training procedures via some sophisticated computational methods. With such initialization, we show that the neural networks possess a different limiting kernel which we call bias-generalized NTK, and we study various properties of the neural networks with this new kernel. We first characterize the gradient descent dynamics. In particular, we show that the network in this case can achieve as fast convergence as the dense network, as opposed to the previous work suggesting that the sparse networks converge slower. In addition, our result improves the previous required width to ensure convergence. Secondly, we study the networks' generalization: we show a width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and generalization bound. To our knowledge, this is the first sparsity-dependent generalization result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new kernel. We identify a data-dependent region where we can derive a much sharper lower bound on the NTK's smallest eigenvalue than the worst-case bound previously known. This can lead to improvement in the generalization bound. 
    more » « less
  2. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less
  3. Meila, Marina; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  4. We study the optimization of wide neural networks (NNs) via gradient flow (GF) in setups that allow feature learning while admitting non-asymptotic global convergence guarantees. First, for wide shallow NNs under the mean-field scaling and with a general class of activation functions, we prove that when the input dimension is no less than the size of the training set, the training loss converges to zero at a linear rate under GF. Building upon this analysis, we study a model of wide multi-layer NNs whose second-to-last layer is trained via GF, for which we also prove a linear-rate convergence of the training loss to zero, but regardless of the input dimension. We also show empirically that, unlike in the Neural Tangent Kernel (NTK) regime, our multi-layer model exhibits feature learning and can achieve better generalization performance than its NTK counterpart. 
    more » « less
  5. Neural Architecture Search (NAS) is a popular method for automatically designing optimized architectures for high-performance deep learning. In this approach, it is common to use bilevel optimization where one optimizes the model weights over the training data (lower-level problem) and various hyperparameters such as the configuration of the architecture over the validation data (upper-level problem). This paper explores the statistical aspects of such problems with train-validation splits. In practice, the lower-level problem is often overparameterized and can easily achieve zero loss. Thus, a-priori it seems impossible to distinguish the right hyperparameters based on training loss alone which motivates a better understanding of the role of train-validation split. To this aim this work establishes the following results: • We show that refined properties of the validation loss such as risk and hyper-gradients are indicative of those of the true test loss. This reveals that the upper-level problem helps select the most generalizable model and prevent overfitting with a near-minimal validation sample size. Importantly, this is established for continuous spaces – which are highly relevant for popular differentiable search schemes. • We establish generalization bounds for NAS problems with an emphasis on an activation search problem. When optimized with gradient-descent, we show that the train-validation procedure returns the best (model, architecture) pair even if all architectures can perfectly fit the training data to achieve zero error. • Finally, we highlight rigorous connections between NAS, multiple kernel learning, and low-rank matrix learning. The latter leads to novel algorithmic insights where the solution of the upper problem can be accurately learned via efficient spectral methods to achieve near-minimal risk. 
    more » « less