skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Analyzing Generalization of Neural Networks through Loss Path Kernels
Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments.  more » « less
Award ID(s):
2107189
PAR ID:
10518466
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
NeurIPS 2023
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study training one-hidden-layer ReLU networks in the neural tangent kernel (NTK) regime, where the networks' biases are initialized to some constant rather than zero. We prove that under such initialization, the neural network will have sparse activation throughout the entire training process, which enables fast training procedures via some sophisticated computational methods. With such initialization, we show that the neural networks possess a different limiting kernel which we call bias-generalized NTK, and we study various properties of the neural networks with this new kernel. We first characterize the gradient descent dynamics. In particular, we show that the network in this case can achieve as fast convergence as the dense network, as opposed to the previous work suggesting that the sparse networks converge slower. In addition, our result improves the previous required width to ensure convergence. Secondly, we study the networks' generalization: we show a width-sparsity dependence, which yields a sparsity-dependent Rademacher complexity and generalization bound. To our knowledge, this is the first sparsity-dependent generalization result via Rademacher complexity. Lastly, we study the smallest eigenvalue of this new kernel. We identify a data-dependent region where we can derive a much sharper lower bound on the NTK's smallest eigenvalue than the worst-case bound previously known. This can lead to improvement in the generalization bound. 
    more » « less
  2. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less
  3. Meila, Marina ; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  4. Yiming Ying (Ed.)
    Optimization and generalization are two essential aspects of statistical machine learning. In this paper, we propose a framework to connect optimization with generalization by analyz- ing the generalization error based on the optimization trajectory under the gradient flow algorithm. The key ingredient of this framework is the Uniform-LGI, a property that is generally satisfied when training machine learning models. Leveraging the Uniform-LGI, we first derive convergence rates for gradient flow algorithm, then we give generalization bounds for a large class of machine learning models. We further apply our framework to three distinct machine learning models: linear regression, kernel regression, and two-layer neural networks. Through our approach, we obtain generalization estimates that match or extend previous results. 
    more » « less
  5. Generalization analyses of deep learning typically assume that the training converges to a fixed point. But, recent results indicate that in practice, the weights of deep neural networks optimized with stochastic gradient descent often oscillate indefinitely. To reduce this discrepancy between theory and practice, this paper focuses on the generalization of neural networks whose training dynamics do not necessarily converge to fixed points. Our main contribution is to propose a notion of statistical algorithmic stability (SAS) that extends classical algorithmic stability to non-convergent algorithms and to study its connection to generalization. This ergodic-theoretic approach leads to new insights when compared to the traditional optimization and learning theory perspectives. We prove that the stability of the time-asymptotic behavior of a learning algorithm relates to its generalization and empirically demonstrate how loss dynamics can provide clues to generalization performance. Our findings provide evidence that networks that “train stably generalize better” even when the training continues indefinitely and the weights do not converge. 
    more » « less