skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2107189

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Conformal prediction is a powerful tool to generate uncertainty sets with guaranteed coverage using any predictive model, under the assumption that the training and test data are i.i.d.. Recently, it has been shown that adversarial examples are able to manipulate conformal methods to construct prediction sets with invalid coverage rates, as the i.i.d. assumption is violated. To address this issue, a recent work, Randomized Smoothed Conformal Prediction (RSCP), was first proposed to certify the robustness of conformal prediction methods to adversarial noise. However, RSCP has two major limitations: (i) its robustness guarantee is flawed when used in practice and (ii) it tends to produce large uncertainty sets. To address these limitations, we first propose a novel framework called RSCP+ to provide provable robustness guarantee in evaluation, which fixes the issues in the original RSCP method. Next, we propose two novel methods, Post-Training Transformation (PTT) and Robust Conformal Training (RCT), to effectively reduce prediction set size with little computation overhead. Experimental results in CIFAR10, CIFAR100, and ImageNet suggest the baseline method only yields trivial predictions including full label set, while our methods could boost the efficiency by up to 4.36×, 5.46×, and 16.9× respectively and provide practical robustness guarantee. 
    more » « less
  2. Deep neural networks have been increasingly used in real-world applications, making it critical to ensure their ability to adapt to new, unseen data. In this paper, we study the generalization capability of neural networks trained with (stochastic) gradient flow. We establish a new connection between the loss dynamics of gradient flow and general kernel machines by proposing a new kernel, called loss path kernel. This kernel measures the similarity between two data points by evaluating the agreement between loss gradients along the path determined by the gradient flow. Based on this connection, we derive a new generalization upper bound that applies to general neural network architectures. This new bound is tight and strongly correlated with the true generalization error. We apply our results to guide the design of neural architecture search (NAS) and demonstrate favorable performance compared with state-of-the-art NAS algorithms through numerical experiments. 
    more » « less
  3. Recent advances have greatly increased the capabilities of large language models (LLMs), but our understanding of the models and their safety has not progressed as fast. In this paper we aim to understand LLMs deeper by studying their individual neurons. We build upon previous work showing large language models such as GPT-4 can be useful in explaining what each neuron in a language model does. Specifically, we analyze the effect of the prompt used to generate explanations and show that reformatting the explanation prompt in a more natural way can significantly improve neuron explanation quality and greatly reduce computational cost. We demonstrate the effects of our new prompts in three different ways, incorporating both automated and human evaluations. 
    more » « less
  4. Recent research shows that the dynamics of an infinitely wide neural network (NN) trained by gradient descent can be characterized by Neural Tangent Kernel (NTK) [27]. Under the squared loss, the infinite-width NN trained by gradient descent with an infinitely small learning rate is equivalent to kernel regression with NTK [4]. However, the equivalence is only known for ridge regression currently [6], while the equivalence between NN and other kernel machines (KMs), e.g. support vector machine (SVM), remains unknown. Therefore, in this work, we propose to establish the equivalence between NN and SVM, and specifically, the infinitely wide NN trained by soft margin loss and the standard soft margin SVM with NTK trained by subgradient descent. Our main theoretical results include establishing the equivalence between NN and a broad family of L2 regularized KMs with finite width bounds, which cannot be handled by prior work, and showing that every finite-width NN trained by such regularized loss functions is approximately a KM. Furthermore, we demonstrate our theory can enable three practical applications, including (i) non-vacuous generalization bound of NN via the corresponding KM; (ii) nontrivial robustness certificate for the infinite-width NN (while existing robustness verification methods would provide vacuous bounds); (iii) intrinsically more robust infinite-width NNs than those from previous kernel regression. 
    more » « less
  5. Recent studies have shown that deep reinforcement learning agents are vulnerable to small adversarial perturbations on the agent’s inputs, which raises concerns about deploying such agents in the real world. To address this issue, we propose RADIAL-RL, a principled framework to train reinforcement learning agents with improved robustness against lp-norm bounded adversarial attacks. Our framework is compatible with popular deep reinforcement learning algorithms and we demonstrate its performance with deep Q-learning, A3C and PPO. We experiment on three deep RL benchmarks (Atari, MuJoCo and ProcGen) to show the effectiveness of our robust training algorithm. Our RADIAL-RL agents consistently outperform prior methods when tested against attacks of varying strength and are more computationally efficient to train. In addition, we propose a new evaluation method called Greedy Worst-Case Reward (GWC) to measure attack agnostic robustness of deep RL agents. We show that GWC can be evaluated efficiently and is a good estimate of the reward under the worst possible sequence of adversarial attacks. All code used for our experiments is available at https://github.com/tuomaso/radial_rl_v2. 
    more » « less