skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radar Clutter Covariance Estimation: A Nonlinear Spectral Shrinkage Approach
In this article, we exploit the spiked covariance structure of the clutter plus noise covariance matrix for radar signal processing. Using state-of-the-art techniques high dimensional statistics, we propose a nonlinear shrinkage-based rotation invariant spiked covariance ma- trix estimator. We state the convergence of the estimated spiked eigen- values. We use a dataset generated from the high-fidelity, site-specific physics-based radar simulation software RFView to compare the proposed algorithm against the existing rank constrained maximum likelihood (RCML)-expected likelihood (EL) covariance estimation  more » « less
Award ID(s):
2312198
PAR ID:
10518490
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Aerospace and Electronic Systems
Volume:
59
Issue:
6
ISSN:
0018-9251
Page Range / eLocation ID:
7640 to 7653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The spiked covariance model has gained increasing popularity in high-dimensional data analysis. A fundamental problem is determination of the number of spiked eigenvalues, K. For estimation of K, most attention has focused on the use of top eigenvalues of sample covariance matrix, and there is little investigation into proper ways of using bulk eigenvalues to estimate K. We propose a principled approach to incorporating bulk eigenvalues in the estimation of K. Our method imposes a working model on the residual covariance matrix, which is assumed to be a diagonal matrix whose entries are drawn from a gamma distribution. Under this model, the bulk eigenvalues are asymptotically close to the quantiles of a fixed parametric distribution. This motivates us to propose a two-step method: the first step uses bulk eigenvalues to estimate parameters of this distribution, and the second step leverages these parameters to assist the estimation of K. The resulting estimator Kˆ aggregates information in a large number of bulk eigenvalues. We show the consistency of Kˆ under a standard spiked covariance model. We also propose a confidence interval estimate for K. Our extensive simulation studies show that the proposed method is robust and outperforms the existing methods in a range of scenarios. We apply the proposed method to analysis of a lung cancer microarray dataset and the 1000 Genomes dataset. 
    more » « less
  2. We study the problem of estimating a large, low-rank matrix corrupted by additive noise of unknown covariance, assuming one has access to additional side information in the form of noise-only measurements. We study the Whiten-Shrink-reColour (WSC) workflow, where a ‘noise covariance whitening’ transformation is applied to the observations, followed by appropriate singular value shrinkage and a ‘noise covariance re-colouring’ transformation. We show that under the mean square error loss, a unique, asymptotically optimal shrinkage nonlinearity exists for the WSC denoising workflow, and calculate it in closed form. To this end, we calculate the asymptotic eigenvector rotation of the random spiked F-matrix ensemble, a result which may be of independent interest. With sufficiently many pure-noise measurements, our optimally tuned WSC denoising workflow outperforms, in mean square error, matrix denoising algorithms based on optimal singular value shrinkage that do not make similar use of noise-only side information; numerical experiments show that our procedure’s relative performance is particularly strong in challenging statistical settings with high dimensionality and large degree of heteroscedasticity. 
    more » « less
  3. We develop a novel shrinkage rule for prediction in a high-dimensional non-exchangeable hierarchical Gaussian model with an unknown spiked covariance structure. We propose a family of priors for the mean parameter, governed by a power hyper-parameter, which encompasses independent to highly dependent scenarios. Corresponding to popular loss functions such as quadratic, generalized absolute, and Linex losses, these prior models induce a wide class of shrinkage predictors that involve quadratic forms of smooth functions of the unknown covariance. By using uniformly consistent estimators of these quadratic forms, we propose an efficient procedure for evaluating these predictors which outperforms factor model based direct plug-in approaches. We further improve our predictors by considering possible reduction in their variability through a novel coordinate-wise shrinkage policy that only uses covariance level information and can be adaptively tuned using the sample eigen structure. Finally, we extend our disaggregate model based methodology to prediction in aggregate models. We propose an easy-to-implement functional substitution method for predicting linearly aggregated targets and establish asymptotic optimality of our proposed procedure. We present simulation experiments as well as real data examples illustrating the efficacy of the proposed method. 
    more » « less
  4. A new type of ensemble Kalman filter is developed, which is based on replacing the sample covariance in the analysis step by its diagonal in a spectral basis. It is proved that this technique improves the approximation of the covariance when the covariance itself is diagonal in the spectral basis, as is the case, e.g., for a second-order stationary random field and the Fourier basis. The method is extended by wavelets to the case when the state variables are random fields which are not spatially homogeneous. Efficient implementations by the fast Fourier transform (FFT) and discrete wavelet transform (DWT) are presented for several types of observations, including high-dimensional data given on a part of the domain, such as radar and satellite images. Computational experiments confirm that the method performs well on the Lorenz 96 problem and the shallow water equations with very small ensembles and over multiple analysis cycles. 
    more » « less
  5. null (Ed.)
    We consider the problem of estimating the conditional independence graph (CIG) of a sparse, high-dimensional proper complex-valued Gaussian graphical model (CGGM). For CGGMs, the problem reduces to estimation of the inverse covariance matrix with more unknowns than the sample size. We consider a smoothly clipped absolute deviation (SCAD) penalty instead of the ℓ 1 -penalty to regularize the problem, and analyze a SCAD-penalized log-likelihood based objective function to establish consistency and sparsistency of a local estimator of inverse covariance in a neighborhood of the true value. A numerical example is presented to illustrate the advantage of SCAD-penalty over the usual ℓ 1 -penalty. 
    more » « less