The rise of machine learning-driven decision-making has sparked a growing emphasis on algorithmic fairness. Within the realm of clustering, the notion of balance is utilized as a criterion for attaining fairness, which characterizes a clustering mechanism as fair when the resulting clusters maintain a consistent proportion of observations representing individuals from distinct groups delineated by protected attributes. Building on this idea, the literature has rapidly incorporated a myriad of extensions, devising fair versions of the existing frequentist clustering algorithms, e.g., k-means, k-medioids, etc., that aim at minimizing specific loss functions. These approaches lack uncertainty quantification associated with the optimal clustering configuration and only provide clustering boundaries without quantifying the probabilities associated with each observation belonging to the different clusters. In this article, we intend to offer a novel probabilistic formulation of the fair clustering problem that facilitates valid uncertainty quantification even under mild model misspecifications, without incurring substantial computational overhead. Mixture model-based fair clustering frameworks facilitate automatic uncertainty quantification, but tend to showcase brittleness under model misspecification and involve significant computational challenges. To circumnavigate such issues, we propose a generalized Bayesian fair clustering framework that inherently enjoys decision-theoretic interpretation. Moreover, we devise efficient computational algorithms that crucially leverage techniques from the existing literature on optimal transport and clustering based on loss functions. The gain from the proposed technology is showcased via numerical experiments and real data examples.
more » « less- Award ID(s):
- 2210689
- PAR ID:
- 10518525
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Entropy
- Volume:
- 26
- Issue:
- 1
- ISSN:
- 1099-4300
- Page Range / eLocation ID:
- 63
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Clustering is a foundational problem in machine learning with numerous applications. As machine learning increases in ubiquity as a back-end for automated systems, concerns about fairness arise. Much of the current literature on fairness deals with discrimination against protected classes in supervised learning (group fairness). We define a different notion of fair clustering wherein the probability that two points (or a community of points) become separated is bounded by an increasing function of their pairwise distance (or community diameter). We capture the situation where data points represent people who gain some benefit from being clustered together. Unfairness arises when certain points are deterministically separated, either arbitrarily or by someone who intends to harm them as in the case of gerrymandering election districts. In response, we formally define two new types of fairness in the clustering setting, pairwise fairness and community preservation. To explore the practicality of our fairness goals, we devise an approach for extending existing k-center algorithms to satisfy these fairness constraints. Analysis of this approach proves that reasonable approximations can be achieved while maintaining fairness. In experiments, we compare the effectiveness of our approach to classical k-center algorithms/heuristics and explore the tradeoff between optimal clustering and fairness.more » « less
-
Supervised learning models have been used in various domains such as lending, college admission, face recognition, natural language processing, etc. However, they may inherit pre-existing biases from training data and exhibit discrimination against protected social groups. Various fairness notions have been proposed to address unfairness issues. In this work, we focus on Equalized Loss (EL), a fairness notion that requires the expected loss to be (approximately) equalized across different groups. Imposing EL on the learning process leads to a non-convex optimization problem even if the loss function is convex, and the existing fair learning algorithms cannot properly be adopted to find the fair predictor under the EL constraint. This paper introduces an algorithm that can leverage off-the-shelf convex programming tools (e.g., CVXPY) to efficiently find the global optimum of this non-convex optimization. In particular, we propose the ELminimizer algorithm, which finds the optimal fair predictor under EL by reducing the non-convex optimization to a sequence of convex optimization problems. We theoretically prove that our algorithm finds the global optimal solution under certain conditions. Then, we support our theoretical results through several empirical studiesmore » « less
-
Supervised learning models have been used in various domains such as lending, college admission, face recognition, natural language processing, etc. However, they may inherit pre-existing biases from training data and exhibit discrimination against protected social groups. Various fairness notions have been proposed to address unfairness issues. In this work, we focus on Equalized Loss (EL), a fairness notion that requires the expected loss to be (approximately) equalized across different groups. Imposing EL on the learning process leads to a non-convex optimization problem even if the loss function is convex, and the existing fair learning algorithms cannot properly be adopted to find the fair predictor under the EL constraint. This paper introduces an algorithm that can leverage off-the-shelf convex programming tools (e.g., CVXPY (Diamond and Boyd, 2016; Agrawal et al., 2018)) to efficiently find the global optimum of this non-convex optimization. In particular, we propose the ELminimizer algorithm, which finds the optimal fair predictor under EL by reducing the non-convex optimization to a sequence of convex optimization problems. We theoretically prove that our algorithm finds the global optimal solution under certain conditions. Then, we support our theoretical results through several empirical studiesmore » « less
-
Motivated by concerns surrounding the fairness effects of sharing and transferring fair machine learning tools, we propose two algorithms: Fairness Warnings and Fair-MAML. The first is a model-agnostic algorithm that provides interpretable boundary conditions for when a fairly trained model may not behave fairly on similar but slightly different tasks within a given domain. The second is a fair meta-learning approach to train models that can be quickly fine-tuned to specific tasks from only a few number of sample instances while balancing fairness and accuracy. We demonstrate experimentally the individual utility of each model using relevant baselines and provide the first experiment to our knowledge of K-shot fairness, i.e. training a fair model on a new task with only K data points. Then, we illustrate the usefulness of both algorithms as a combined method for training models from a few data points on new tasks while using Fairness Warnings as interpretable boundary conditions under which the newly trained model may not be fair.more » « less
-
null (Ed.)As machine learning has become more prevalent, researchers have begun to recognize the necessity of ensuring machine learning systems are fair. Recently, there has been an interest in defining a notion of fairness that mitigates over-representation in traditional clustering. In this paper we extend this notion to hierarchical clustering, where the goal is to recursively partition the data to optimize a specific objective. For various natural objectives, we obtain simple, efficient algorithms to find a provably good fair hierarchical clustering. Empirically, we show that our algorithms can find a fair hierarchical clustering, with only a negligible loss in the objective.more » « less