skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DC-Carrier Cooperation for Rapid Restoration against PNE-Node Failure in Optical Networks
We propose a rapid restoration strategy against PNE-node failure during postdisaster cooperation among DC providers and optical-network carriers. Our strategy reduces disruption and improves DC-service restoration by 35% in 20% less time compared to baseline.  more » « less
Award ID(s):
2210384
PAR ID:
10518560
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
Optical Fiber Communications Conference and Exhibition (OFC)
ISBN:
979-8-3503-7758-3
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In network-cloud ecosystems, large-scale failures affecting network carrier and datacenter (DC) infrastructures can severely disrupt cloud services. Post-disaster cloud service restoration requires cooperation among carriers and DC providers (DCPs) to minimize downtime. Such cooperation is challenging due to proprietary and regulatory policies, which limit access to confidential information (detailed topology, resource availability, etc.). Accordingly, we introduce a third-party entity, a provider-neutral exchange, which enables cooperation by sharing abstracted information. We formulate an optimization problem for DCP–carrier cooperation to maximize service restoration while minimizing restoration time and cost. We propose a scalable heuristic, demonstrating significant improvement in restoration efficiency with different topologies and failure scenarios. 
    more » « less
  2. This paper presents a novel direct duty-to-current control strategy to mitigate the dc bias and eliminate the need for a dc blocking capacitor in Dual Active Bridge (DAB) converters. The proposed control mechanism directly controls the duty cycle of each leg in the primary H-bridge to regulate the average (over one switching period) volt-seconds applied to the transformer primary winding to be zero without a dc blocking capacitor, under both steady-state and transient operations. This strategy is particularly relevant for electric vehicle (EV) applications, where variations in power demand and charging protocols can introduce dc bias, and the proposed control strategy work seamlessly with the output voltage control loop, during both steady-state operation and transients. The analysis, presented in detail, includes simulation results validating the effectiveness of the proposed control strategy under various steady-state and transient conditions, demonstrating its robustness and applicability in EV systems. 
    more » « less
  3. An innovative system restoration strategy using doubly‐fed induction generator‐based wind farms is proposed. The strategy involves retention of charge in the DC bus following a blackout and ‘Hot‐Swapping’ between direct flux control mode and conventional grid‐connected mode, which does not require resetting of any controller dynamic states and avoids the need for energy storage. An autonomous synchronisation mechanism enabled by remote synchrophasors is also proposed. A blacked‐out system, which includes a wind farm and a voltage source converter (VSC)‐HVDC connected to a network unaffected by blackout, is used as the study system. Transmission line charging and load pickup is performed using the wind farm in flux control mode while the VSC‐HVDC system conducts the same process for another portion of the system. The proposed ‘Hot‐Swapping’ and autonomous synchronisation approach is applied to connect the two parts of the grid and switch the wind farm to grid connected mode of operation. The results are demonstrated in a hybrid co‐simulation platform where the aforementioned system is modelled in EMT‐type software and the rest of the network is represented in a phasor framework. 
    more » « less
  4. Abstract Understanding the diffusion of innovative ideas, behaviors, and technologies could reduce disconnects between conservation science and management, such as the science‐practice gap between biodiversity research and restoration practice. To assess knowledge uptake as an indicator of diffusion of innovation in restoration practice, we conducted an online survey of two organizations focused on coastal habitat restoration: Coastal and Estuarine Research Federation (CERF) and International Coral Reef Society (ICRS). We evaluated experience restoring particular habitats, along with perceptions of the purpose of restoration, the metrics used to evaluate restoration success, and the challenges to successful restoration. We then examined the perceived importance of genetic diversity for restoration success as an indicator of knowledge‐practice transfer in conservation strategy. The practice of coastal habitat restoration diverged by organization and habitat: a higher percentage of CERF members had restored oysters, marshes, and seagrasses compared to ICRS, whereas the reverse was true for corals. Views of the purpose of restoration, the site selection process, and the challenges to successful restoration were similar. Despite similarities in perceptions of the restoration process, the two organizations had variable indications of knowledge‐practice transfer: ICRS respondents ranked the importance of genetic diversity as a restoration strategy higher than did CERF respondents. The perceived importance of genetic diversity also differed by habitat, with both CERF and ICRS respondents ranking diversity as more important for corals. The more successful transfer of knowledge to practice in the coral community indicates that the disconnect between genetic diversity research and restoration practice is surmountable. In addition, it serves as a potential strategy for promoting the spread of innovative restoration practices to achieve long‐term recovery of ecosystems. 
    more » « less
  5. Grid-forming inverters must optimally transfer power from dc-coupled photovoltaic arrays and batteries into an ac grid. Further, they must be able to restore single-phase induction motors (SPIMs) and withstand fault-induced delayed-voltage-recovery (FIDVR) events. These resilience and reliability challenges are addressed here by: (i) engineering a controller to optimally operate dc-coupled hybrid resources; (ii) modeling residential air-conditioning compressors for restoration/FIDVR studies; and (iii) analyzing SPIM thermal-relay performance under limited inverter currents and designing an electronic protection for stalled SPIMs. These contributions are demonstrated via electromagnetic-transient simulations and can be helpful to understand recommendations by the North American Electric Reliability Corporation. 
    more » « less