skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: FIDVR Capability of Hybrid Grid-Forming PV Power Plants During Feeder Restoration
Grid-forming inverters must optimally transfer power from dc-coupled photovoltaic arrays and batteries into an ac grid. Further, they must be able to restore single-phase induction motors (SPIMs) and withstand fault-induced delayed-voltage-recovery (FIDVR) events. These resilience and reliability challenges are addressed here by: (i) engineering a controller to optimally operate dc-coupled hybrid resources; (ii) modeling residential air-conditioning compressors for restoration/FIDVR studies; and (iii) analyzing SPIM thermal-relay performance under limited inverter currents and designing an electronic protection for stalled SPIMs. These contributions are demonstrated via electromagnetic-transient simulations and can be helpful to understand recommendations by the North American Electric Reliability Corporation.  more » « less
Award ID(s):
2013739
PAR ID:
10512079
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE Transactions on Energy Conversion
Date Published:
Journal Name:
IEEE Transactions on Energy Conversion
ISSN:
0885-8969
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud providers are adapting datacenter (DC) capacity to reduce carbon emissions. With hyperscale datacenters exceeding 100 MW individually, and in some grids exceeding 15% of power load, DC adaptation is large enough to harm power grid dynamics, increasing carbon emissions, power prices, or reduce grid reliability. To avoid harm, we explore coordination of DC capacity change varying scope in space and time. In space, coordination scope spans a single datacenter, a group of datacenters, and datacenters with the grid. In time, scope ranges from online to day-ahead. We also consider what DC and grid information is used (e.g. real-time and day-ahead average carbon, power price, and compute backlog). For example, in our proposed PlanShare scheme, each datacenter uses day-ahead information to create a capacity plan and shares it, allowing global grid optimization (over all loads, over entire day). We evaluate DC carbon emissions reduction. Results show that local coordination scope fails to reduce carbon emissions significantly (3.2%–5.4% reduction). Expanding coordination scope to a set of datacenters improves slightly (4.9%–7.3%). PlanShare, with grid-wide coordination and full-day capacity planning, performs the best. PlanShare reduces DC emissions by 11.6%–12.6%, 1.56x–1.26x better than the best local, online approach’s results. PlanShare also achieves lower cost. We expect these advantages to increase as renewable generation in power grids increases. Further, a known full-day DC capacity plan provides a stable target for DC resource management. 
    more » « less
  2. DC microgrids have attracted significant attention over the last decade in both academia and industry. DC microgrids have demonstrated superiority over AC microgrids with respect to reliability, efficiency, control simplicity, integration of renewable energy sources, and connection of dc loads. Despite these numerous advantages, designing and implementing an appropriate protection system for dc microgrids remains a significant challenge. The challenge stems from the rapid rise of dc fault current which must be extinguished in the absence of naturally occurring zero crossings, potentially leading to sustained arcs. In this paper, the challenges of DC microgrid protection are investigated from various aspects including, dc fault current characteristics, ground systems, fault detection methods, protective devices, and fault location methods. In each part, a comprehensive review has been carried out. Finally, future trends in the protection of DC microgrids are briefly discussed. 
    more » « less
  3. Abstract The mass deployment of distributed energy resources (DERs) to achieve clean energy objectives has become a major goal across several states in the U.S. However, the viability and reality of achieving these goals in dense urban areas, such as New York City, are challenged by several ‘Techno‐Economic’ barriers associated with available land space and the number of AC/direct current (DC) conversion stages that requires multiple electrical balance of plant (BOP) equipment for pairing/interconnecting these resources to the grid. The fundamental issue of interconnection is addressed by assessing the use of a common DC bus in a one‐of‐a‐kind configuration (to pair grid‐connected energy storage, photovoltaic, and electric vehicle chargers (EVC) systems) and reduce the number of BOP equipment needed for deployment. Building on similar work that has touched on distribution‐level DC interconnection, this paper will also address the intricacies of interconnecting third‐party and Utility DERs to a DC‐based point of common coupling. It will examine the requisite site controller configuration (control architecture) and requirements to coordinate the energy storage system's use between managing Utility and Third‐Party EVC demand while prioritising dispatch. The result shows that the DC‐coupled system is technologically feasible and hierarchical control architecture is recommended to maintain stability during various use cases proposed. This will inform a lab demonstration of this system that aims to test DC integration of the DERs with recommendations for the microgrid (MG) controllers and reduction in the BOP equipment. These learnings will then be applied to practical grid‐scale deployment of the systems at Con Edison's Cedar Street Substation. This system, if proven successful, has the potential to change the way community distributed generation and MGs are interconnected to the Utility System. 
    more » « less
  4. Photovoltaic (PV) power plants with grid-forming technology must withstand severe disturbances and remain operational. To address this challenge, this paper sets forth a grid-forming strategy for PV solar power plants so that they can ride through power system faults. This capability is accomplished by leveraging two-axis proportional-integral regulators with anti-windup functionality. This paper also demonstrates that fluctuations of solar irradiance can cause significant dc-link voltage variations and loss of synchronism of grid-forming PV plants. Hence, we develop an active dc-link protection method which depends on estimation in solar irradiance. The contributions of this paper are demonstrated via positive-sequence simulations of modified versions of the WSCC 9- and IEEE 39-bus grids. 
    more » « less
  5. DC microgrids incorporate several converters for distributed energy resources connected to different passive and active loads. The complex interactions between the converters and components and their potential failures can significantly affect the grids' resilience and health; hence, they must be continually assessed and monitored. This paper presents a machine learning-assisted prognostic health monitoring (PHM) and diagnosis approach, enabling progressive interactions between the converters at multiple nodes to dynamically examine the grid's (or micro-grid's) health in real time. By measuring the resulting impedance at the power converters' terminals at various grid nodes, a neural network-based classifier helps detect the grid's health condition and identify the potential fault-prone zones, along with the type and location of the fault type in the grid topology. For a faulty grid, a Naive Bayes and a support vector machine (SVM)-based classifiers are used to locate and identify the faulty type, respectively. A separate neural network-based regression model predicts the source power delivered and the loads at different terminals in a healthy grid network. The proposed concepts are supported by detailed analysis and simulation results in a simple four-terminal DC microgrid topology and a standard IEEE 5 Bus system. 
    more » « less