skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extended Emission-line Regions in Poststarburst Galaxies Hosting Tidal Disruption Events
Abstract We report the discovery of an extended emission-line region (EELR) in MUSE observations of Markarian 950, a nearby (z= 0.01628) poststarburst (PSB) galaxy that hosted the tidal disruption event (TDE) iPTF 16fnl. The EELR requires a nonstellar ionizing continuum with a luminosity L ion , min 10 43 erg s−1, inconsistent with the current weak state (LIR,AGN< 2.5 × 1042erg s−1) of the galactic nucleus. The ionized gas has low velocity (∼–50 km s−1) and low turbulence (σgas≲ 50 km s−1) and is kinematically decoupled from the stellar motions, indicating that the gas kinematics is not active galactic nucleus (AGN) driven. Markarian 950 is the third PSB galaxy to host a weak nuclear ionizing source as well as an EELR and a TDE. The overall properties of these three galaxies, including the kinematics and accretion history, are unusual but strikingly similar. We estimate that the incidence of EELRs in PSB-TDE hosts is a factor of ∼10 × higher than in other PSB galaxies. This suggests that a gas-rich postmerger environment is a key ingredient in driving elevated TDE rates. Based on the current observations, we cannot rule out that the EELRs may be powered through an elevated TDE rate in these galaxies. If the EELRs are not TDE powered, the presence of intermittent AGN activity, and in particular the fading of the AGN, may be associated with an increased TDE rate and/or an increased rate of detecting TDEs.  more » « less
Award ID(s):
2206164
PAR ID:
10518590
Author(s) / Creator(s):
;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
969
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L17
Size(s):
Article No. L17
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy ( K 0 = 18 9 + 11 keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rate M ̇ cool = 100 60 + 90 M yr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate is SFR [ O II ] = 1.7 0.6 + 1.0 M yr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power P cav = 3.2 1.3 + 2.1 × 10 44 erg s−1, which is consistent with the X-ray cooling luminosity ( L cool = 1.9 0.5 + 0.2 × 10 44 erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters. 
    more » « less
  2. Abstract A star completely destroyed in a tidal disruption event (TDE) ignites a luminous flare that is powered by the fallback of tidally stripped debris to a supermassive black hole (SMBH) of massM. We analyze two estimates for the peak fallback rate in a TDE, one being the “frozen-in” model, which predicts a strong dependence of the time to peak fallback rate,tpeak, on both stellar mass and age, with 15 days ≲tpeak≲ 10 yr for main sequence stars with masses 0.2 ≤M/M≤ 5 andM= 106M. The second estimate, which postulates that the star is completely destroyed when tides dominate the maximum stellar self-gravity, predicts thattpeakis very weakly dependent on stellar type, with t peak = 23.2 ± 4.0 days M / 10 6 M 1 / 2 for 0.2 ≤M/M≤ 5, while t peak = 29.8 ± 3.6 days M / 10 6 M 1 / 2 for a Kroupa initial mass function truncated at 1.5M. This second estimate also agrees closely with hydrodynamical simulations, while the frozen-in model is discrepant by orders of magnitude. We conclude that (1) the time to peak luminosity in complete TDEs is almost exclusively determined by SMBH mass, and (2) massive-star TDEs power the largest accretion luminosities. Consequently, (a) decades-long extra-galactic outbursts cannot be powered by complete TDEs, including massive-star disruptions, and (b) the most highly super-Eddington TDEs are powered by the complete disruption of massive stars, which—if responsible for producing jetted TDEs—would explain the rarity of jetted TDEs and their preference for young and star-forming host galaxies. 
    more » « less
  3. Abstract We present a detailed analysis of AT 2020nov, a tidal disruption event (TDE) in the center of its host galaxy, located at a redshift ofz= 0.083. AT 2020nov exhibits unique features, including double-peaked Balmer emission lines, a broad UV/optical flare, and a peak log luminosity in the extreme-ultraviolet (EUV) estimated at 45.6 6 0.33 + 0.10 erg s 1 . A late-time X-ray flare was also observed, reaching an absorbed luminosity of 1.67 × 1043erg s−1approximately 300 days after the UV/optical peak. Multiwavelength coverage, spanning optical, UV, X-ray, and mid-infrared (MIR) bands, reveals a complex spectral energy distribution (SED) that includes MIR flaring indicative of dust echoes, suggesting a dust covering fraction consistent with typical TDEs. Spectral modeling indicates the presence of an extended, quiescent disk around the central supermassive black hole with a radius of 5.0 6 0.77 + 0.59 × 1 0 4 R g . The multicomponent SED model, which includes a significant EUV component, suggests that the primary emission from the TDE is reprocessed by this extended disk, producing the observed optical and MIR features. The lack of strong active galactic nuclei signatures in the host galaxy, combined with the quiescent disk structure, highlights AT 2020nov as a rare example of a TDE occurring in a galaxy with a dormant but extended preexisting accretion structure. 
    more » « less
  4. Abstract Active galactic nuclei (AGN) are promising candidate sources of high-energy astrophysical neutrinos, since they provide environments rich in matter and photon targets where cosmic-ray interactions may lead to the production of gamma rays and neutrinos. We searched for high-energy neutrino emission from AGN using the Swift-BAT Spectroscopic Survey catalog of hard X-ray sources and 12 yr of IceCube muon track data. First, upon performing a stacked search, no significant emission was found. Second, we searched for neutrinos from a list of 43 candidate sources and found an excess from the direction of two sources, the Seyfert galaxies NGC 1068 and NGC 4151. We observed NGC 1068 at flux ϕ ν μ + ν ¯ μ = 4.0 2 1.52 + 1.58 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV, with a power-law spectral indexγ= 3.10 0.22 + 0.26 , consistent with previous IceCube results. The observation of a neutrino excess from the direction of NGC 4151 is at a posttrial significance of 2.9σ. If interpreted as an astrophysical signal, the excess observed from NGC 4151 corresponds to a flux ϕ ν μ + ν ¯ μ = 1.5 1 0.81 + 0.99 × 1 0 11 TeV−1cm−2s−1normalized at 1 TeV andγ= 2.83 0.28 + 0.35
    more » « less
  5. Abstract This paper presents a newly established sample of 103 unique galaxies or galaxy groups at 0.4 ≲z≲ 0.7 from the Cosmic Ultraviolet Baryon Survey (CUBS) for studying the warm-hot circumgalactic medium (CGM) probed by both Oviand Neviiiabsorption. The galaxies and associated neighbors are identified at <1 physical Mpc from the sightlines toward 15 CUBS QSOs atzQSO≳ 0.8. A total of 30 galaxies or galaxy groups exhibit associated Oviλλ1031, 1037 doublet absorption within a line-of-sight velocity interval of ±250 km s−1, while the rest show no trace of Ovito a detection limit of log N OVI / cm 2 13.7 . Meanwhile, only five galaxies or galaxy groups exhibit the Neviiiλλ770, 780 doublet absorption, down to a limiting column density of log N NeVIII / cm 2 14.0 . These Ovi- and Neviii-bearing halos reside in different galaxy environments with stellar masses ranging from log M star / M 8 to ≈11.5. The warm-hot CGM around galaxies of different stellar masses and star formation rates exhibits different spatial profiles and kinematics. In particular, star-forming galaxies with log M star / M 9 11 show a significant concentration of metal-enriched warm-hot CGM within the virial radius, while massive quiescent galaxies exhibit flatter radial profiles of both column densities and covering fractions. In addition, the velocity dispersion of Oviabsorption is broad withσυ> 40 km s−1for galaxies of log M star / M > 9 within the virial radius, suggesting a more dynamic warm-hot halo around these galaxies. Finally, the warm-hot CGM probed by Oviand Neviiiis suggested to be the dominant phase in sub-L* galaxies with log M star / M 9 10 based on their high ionization fractions in the CGM. 
    more » « less