Abstract Low-pass single-cell DNA sequencing technologies and algorithmic advancements have enabled haplotype-specific copy number calling on thousands of cells within tumors. However, measurement uncertainty may result in spurious CNAs inconsistent with realistic evolutionary constraints. We introduce evolution-aware copy number calling via deep reinforcement learning (CNRein). Our simulations demonstrate CNRein infers more accurate copy-number profiles and better recapitulates ground truth clonal structure than existing methods. On sequencing data of breast and ovarian cancer, CNRein produces more parsimonious solutions than existing methods while maintaining agreement with single-nucleotide variants. Additionally, CNRein shows consistency on a breast cancer patient sequenced with distinct low-pass technologies. 
                        more » 
                        « less   
                    This content will become publicly available on December 1, 2025
                            
                            NestedBD: Bayesian inference of phylogenetic trees from single-cell copy number profiles under a birth-death model
                        
                    
    
            Abstract Copy number aberrations (CNAs) are ubiquitous in many types of cancer. Inferring CNAs from cancer genomic data could help shed light on the initiation, progression, and potential treatment of cancer. While such data have traditionally been available via “bulk sequencing,” the more recently introduced techniques for single-cell DNA sequencing (scDNAseq) provide the type of data that makes CNA inference possible at the single-cell resolution. We introduce a new birth-death evolutionary model of CNAs and a Bayesian method, NestedBD, for the inference of evolutionary trees (topologies and branch lengths with relative mutation rates) from single-cell data. We evaluated NestedBD’s performance using simulated data sets, benchmarking its accuracy against traditional phylogenetic tools as well as state-of-the-art methods. The results show that NestedBD infers more accurate topologies and branch lengths, and that the birth-death model can improve the accuracy of copy number estimation. And when applied to biological data sets, NestedBD infers plausible evolutionary histories of two colorectal cancer samples. NestedBD is available athttps://github.com/Androstane/NestedBD. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10518671
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Algorithms for Molecular Biology
- Volume:
- 19
- Issue:
- 1
- ISSN:
- 1748-7188
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract MotivationAdvances in whole-genome single-cell DNA sequencing (scDNA-seq) have led to the development of numerous methods for detecting copy number aberrations (CNAs), a key driver of genetic heterogeneity in cancer. While most of these methods are limited to the inference of total copy number, some recent approaches now infer allele-specific CNAs using innovative techniques for estimating allele-frequencies in low coverage scDNA-seq data. However, these existing allele-specific methods are limited in their segmentation strategies, a crucial step in the CNA detection pipeline. ResultsWe present SEACON (Single-cell Estimation of Allele-specific COpy Numbers), an allele-specific copy number profiler for scDNA-seq data. SEACON uses a Gaussian Mixture Model to identify latent copy number states and breakpoints between contiguous segments across cells, filters the segments for high-quality breakpoints using an ensemble technique, and adopts several strategies for tolerating noisy read-depth and allele frequency measurements. Using a wide array of both real and simulated datasets, we show that SEACON derives accurate copy numbers and surpasses existing approaches under numerous experimental conditions, and identify its strengths and weaknesses. Availability and implementationSEACON is implemented in Python and is freely available open-source from https://github.com/NabaviLab/SEACON and https://doi.org/10.5281/zenodo.12727008.more » « less
- 
            Abstract Single cell profiling techniques including multi-omics and spatial-omics technologies allow researchers to study cell-cell variation within a cell population. These variations extend to biological networks within cells, in particular, the gene regulatory networks (GRNs). GRNs rewire as the cells evolve, and different cells can have different governing GRNs. However, existing GRN inference methods usually infer a single GRN for a population of cells, without exploring the cell-cell variation in terms of their regulatory mechanisms. Recently, jointly profiled single cell transcriptomics and chromatin accessibility data have been used to infer GRNs. Although methods based on such multi-omics data were shown to improve over the accuracy of methods using only single cell RNA-seq (scRNA-seq) data, they do not take full advantage of the single cell resolution chromatin accessibility data. We propose CeSpGRN (CellSpecificGeneRegulatoryNetwork inference), which infers cell-specific GRNs from scRNA-seq, single cell multi-omics, or single cell spatial-omics data. CeSpGRN uses a Gaussian weighted kernel that allows the GRN of a given cell to be learned from the sequencing profile of itself and its neighboring cells in the developmental process. The kernel is constructed from the similarity of gene expressions or spatial locations between cells. When the chromatin accessibility data is available, CeSpGRN constructs cell-specific prior networks which are used to further improve the inference accuracy. We applied CeSpGRN to various types of real-world datasets and inferred various regulation changes that were shown to be important in cell development. We also quantitatively measured the performance of CeSpGRN on simulated datasets and compared with baseline methods. The results show that CeSpGRN has a superior performance in reconstructing the GRN for each cell, as well as in detecting the regulatory interactions that differ between cells. CeSpGRN is available athttps://github.com/PeterZZQ/CeSpGRN.more » « less
- 
            Abstract PremiseTarget sequence capture (Hyb‐Seq) is a cost‐effective sequencing strategy that employs RNA probes to enrich for specific genomic sequences. By targeting conserved low‐copy orthologs, Hyb‐Seq enables efficient phylogenomic investigations. Here, we present Asparagaceae1726—a Hyb‐Seq probe set targeting 1726 low‐copy nuclear genes for phylogenomics in the angiosperm family Asparagaceae—which will aid the often‐challenging delineation and resolution of evolutionary relationships within Asparagaceae. MethodsHere we describe and validate the Asparagaceae1726 probe set (https://github.com/bentzpc/Asparagaceae1726) in six of the seven subfamilies of Asparagaceae. We perform phylogenomic analyses with these 1726 loci and evaluate how inclusion of paralogs and bycatch plastome sequences can enhance phylogenomic inference with target‐enriched data sets. ResultsWe recovered at least 82% of target orthologs from all sampled taxa, and phylogenomic analyses resulted in strong support for all subfamilial relationships. Additionally, topology and branch support were congruent between analyses with and without inclusion of target paralogs, suggesting that paralogs had limited effect on phylogenomic inference. DiscussionAsparagaceae1726 is effective across the family and enables the generation of robust data sets for phylogenomics of any Asparagaceae taxon. Asparagaceae1726 establishes a standardized set of loci for phylogenomic analysis in Asparagaceae, which we hope will be widely used for extensible and reproducible investigations of diversification in the family.more » « less
- 
            Abstract Genome copy number is an important source of genetic variation in health and disease. In cancer, Copy Number Alterations (CNAs) can be inferred from short-read sequencing data, enabling genomics-based precision oncology. Emerging Nanopore sequencing technologies offer the potential for broader clinical utility, for example in smaller hospitals, due to lower instrument cost, higher portability, and ease of use. Nonetheless, Nanopore sequencing devices are limited in the number of retrievable sequencing reads/molecules compared to short-read sequencing platforms, limiting CNA inference accuracy. To address this limitation, we targeted the sequencing of short-length DNA molecules loaded at optimized concentration in an effort to increase sequence read/molecule yield from a single nanopore run. We show that short-molecule nanopore sequencing reproducibly returns high read counts and allows high quality CNA inference. We demonstrate the clinical relevance of this approach by accurately inferring CNAs in acute myeloid leukemia samples. The data shows that, compared to traditional approaches such as chromosome analysis/cytogenetics, short molecule nanopore sequencing returns more sensitive, accurate copy number information in a cost effective and expeditious manner, including for multiplex samples. Our results provide a framework for short-molecule nanopore sequencing with applications in research and medicine, which includes but is not limited to, CNAs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
