skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: On the Specific Capacity and Cycle Stability of Si@void@C Anode: Effects of Electrolytes
Electrolytes play a critical role in the formation of stable solid electrolyte interphase (SEI) for Si anodes. This study investigates the impacts of five different electrolytes on the specific capacity and cycle stability of Si-based anodes and confirms the advantages of the second-generation (Gen2) electrolyte over the first-generation (Gen1) electrolyte in the first 200 cycles, beyond which the advantages of Gen2 electrolyte disappear. Addition of more FEC and VC additives to Gen2 electrolyte does not offer significant advantages in the cycle stability and specific capacities. However, very high FEC electrolytes with 20 wt% FEC and 80% dimethyl carbonate exhibits strong dependance on the lithiation cutoff voltage. This electrolyte results in durable SEI layers when the lithiation cutoff voltage is at 0.01 V vs Li/Li+. Furthermore, lowering the lithiation cutoff voltage from 0.1 V to 0.01 V vs Li/Li+has raised the specific capacity of Si-based anodes, leading to higher specific capacities than those of graphite anodes at the electrode level for 380 cycles investigated in this study. The understandings developed here provide unambiguous guidelines for selection of electrolytes to achieve long cycle stability and high specific capacity of Si-based cells simultaneously in the future.  more » « less
Award ID(s):
1918991
PAR ID:
10518735
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing Limited
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
5
ISSN:
0013-4651
Page Range / eLocation ID:
050555
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Silicon has the potential to be a high-performance anode material, but its practical application is impeded by huge volume expansion during lithiation. Many studies have revealed that the huge volume expansion problem can be mitigated by introducing engineered voids into Si/C core–shell structures. In this study, a Si/C core/shell structure with engineered voids, termed Si@void@C, is investigated for its specific capacity and cycle stability as a function of particle size and charge/discharge protocol. The study shows that finer Si@void@C particles result in higher specific capacities, but with little impact on the cycle stability. Further, lower and upper cutoff voltages in charge/discharge have a profound impact on the specific capacity and cycle stability. Importantly, cutoff voltages in formation cycles have long-lasting effects on the cycle stability, indicating the critical role of forming a robust solid electrolyte interphase (SEI) layer during formation cycles. Using a constant current charge followed by potentiostatic hold charge can further improve the cycle stability and minimize the sharp capacity decay in the first 20–40 cycles. With proper choices of charge/discharge protocols, the specific capacities of Si@void@C anodes at the electrode level are 66.8%, 38.2% and 22.7% higher than those of graphite anodes at the 1st, 300th and 500th cycles, respectively, proving that Si@void@C has promising potential to replace graphite anodes for practical applications in the future. 
    more » « less
  2. The formation and evolution of the dynamic solid electrolyte interphase (SEI) at the Si anode/electrolyte interface are yet to be completely understood to solve irreversible capacity loss and increase battery cycle life. Herein, the evolution of SEI and its dynamic properties at the Si anode/electrolyte interface are investigated in two electrolyte systems, a 1.2 M LiPF 6 in EC: EMC 3:7 (wt%) electrolyte (referred to as Gen2) and a 1.2 M LiTFSI in EC: EMC 3:7 (wt%) electrolyte (referred to as LiTFSI). Two lithiation stages are studied: the pre-lithiation ( pre-Li ) SEI stage and the post-lithiation ( post-Li ) stage. Findings reveal at the pre-Li , SEI formation starts at an early potential and contributes to the greater mass gain in the Si/Gen2, and it is dominated by the formation of a non-uniform F- and P-rich layer in Si/Gen2, in contrast to a homogeneous F- and C-containing layer at the Si/LiTFSI interphase. The initially formed SEI in LiTFSI further benefits the charge transfer kinetics. At the post-Li stage, a more substantial SEI evolution is observed at Si/LiTFSI. This study offers a foundational understanding of the SEI dynamic evolution with electrolyte dependence. Findings from this report offer important insights into solving the complex SEI stability issues on Si. 
    more » « less
  3. Abstract The application of Li‐metal‐anodes (LMA) can significantly improve the energy density of state‐of‐the‐art lithium ion batteries. Lots of new electrolyte systems have been developed to form a stable solid electrolyte interphase (SEI) films, thereby achieving long‐term cycle stability of LMA. Unfortunately, the common problem faced by these electrolytes is poor oxidation stability, which rarely supports the cycling of high‐voltage Li‐metal batteries (LMBs). In this work, a new single‐component solvent dimethoxy(methyl)(3,3,3‐trifluoropropyl) silane is proposed. The electrolyte composed of this solvent and 3 mLiFSI salt successfully supports the long‐term cycle stability of limited‐Li (50 µm)||high loading LiCoO2(≈20 mg cm−2) cell at 4.6 V. Experiments and theoretical research results show that the outstanding performance of the electrolyte in high‐voltage LMBs is mainly attributed to its unique solvation structures and its great ability to build a highly stable and robust interphase on the surface of LMA and high‐voltage cathodes. Interestingly, this proposed electrolyte system builds a stable SEI film rich in LiF and Li3N on the surface of LMA by improving the two‐electron reduction activity of FSIwithout adding LiNO3, the well‐known additive used for LMBs. The design idea of the proposed electrolyte can guide the development of high‐voltage LMBs. 
    more » « less
  4. Three different organic solvents (dimethylacetamide (DMAc), dimethylformamide (DMF), and dimethyl sulfoxide (DMSO)) were used to improve the solubility of LiNO 3 in a standard carbonate-based electrolyte with lithium difluoro(oxalato)borate (LiDFOB) as the salt. Together, the LiDFOB and organic-solvent solubilized LiNO 3 preferentially reduce on the surface of silicon-containing anodes to create an SEI rich in oxalates, nitrate decomposition species, and B-F species. The improved stability of the SEI throughout the first 100 cycles results in silicon and silicon/graphite composite anodes with better capacity retention than observed with standard electrolytes or fluoroethylene carbonate (FEC) containing electrolytes. This study demonstrates the feasibility of the use of non-traditional electrolyte solvents in the improvement and optimization of lithium ion-battery electrolytes. 
    more » « less
  5. Abstract A new concentrated ternary salt ether‐based electrolyte enables stable cycling of lithium metal battery (LMB) cells with high‐mass‐loading (13.8 mg cm−2, 2.5 mAh cm−2) NMC622 (LiNi0.6Co0.2Mn0.2O2) cathodes and 50 μm Li anodes. Termed “CETHER‐3,” this electrolyte is based on LiTFSI, LiDFOB, and LiBF4with 5 vol% fluorinated ethylene carbonate in 1,2‐dimethoxyethane. Commercial carbonate and state‐of‐the‐art binary salt ether electrolytes were also tested as baselines. With CETHER‐3, the electrochemical performance of the full‐cell battery is among the most favorably reported in terms of high‐voltage cycling stability. For example, LiNixMnyCo1–x–yO2(NMC)‐Li metal cells retain 80% capacity at 430 cycles with a 4.4 V cut‐off and 83% capacity at 100 cycles with a 4.5 V cut‐off (charge at C/5, discharge at C/2). According to simulation by density functional theory and molecular dynamics, this favorable performance is an outcome of enhanced coordination between Li+and the solvent/salt molecules. Combining advanced microscopy (high‐resolution transmission electron microscopy, scanning electron microscopy) and surface science (X‐ray photoelectron spectroscopy, time‐of‐fight secondary ion mass spectroscopy, Fourier‐transform infrared spectroscopy, Raman spectroscopy), it is demonstrated that a thinner and more stable cathode electrolyte interphase (CEI) and solid electrolyte interphase (SEI) are formed. The CEI is rich in lithium sulfide (Li2SO3), while the SEI is rich in Li3N and LiF. During cycling, the CEI/SEI suppresses both the deleterious transformation of the cathode R‐3m layered near‐surface structure into disordered rock salt and the growth of lithium metal dendrites. 
    more » « less