skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Electrolyte Role in SEI Evolution at Si in the Pre-lithiation Stage vs the Post-lithiation Stage
The formation and evolution of the dynamic solid electrolyte interphase (SEI) at the Si anode/electrolyte interface are yet to be completely understood to solve irreversible capacity loss and increase battery cycle life. Herein, the evolution of SEI and its dynamic properties at the Si anode/electrolyte interface are investigated in two electrolyte systems, a 1.2 M LiPF 6 in EC: EMC 3:7 (wt%) electrolyte (referred to as Gen2) and a 1.2 M LiTFSI in EC: EMC 3:7 (wt%) electrolyte (referred to as LiTFSI). Two lithiation stages are studied: the pre-lithiation ( pre-Li ) SEI stage and the post-lithiation ( post-Li ) stage. Findings reveal at the pre-Li , SEI formation starts at an early potential and contributes to the greater mass gain in the Si/Gen2, and it is dominated by the formation of a non-uniform F- and P-rich layer in Si/Gen2, in contrast to a homogeneous F- and C-containing layer at the Si/LiTFSI interphase. The initially formed SEI in LiTFSI further benefits the charge transfer kinetics. At the post-Li stage, a more substantial SEI evolution is observed at Si/LiTFSI. This study offers a foundational understanding of the SEI dynamic evolution with electrolyte dependence. Findings from this report offer important insights into solving the complex SEI stability issues on Si.  more » « less
Award ID(s):
1919919 2047753
PAR ID:
10402629
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
170
Issue:
2
ISSN:
0013-4651
Page Range / eLocation ID:
020507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Electrolytes play a critical role in the formation of stable solid electrolyte interphase (SEI) for Si anodes. This study investigates the impacts of five different electrolytes on the specific capacity and cycle stability of Si-based anodes and confirms the advantages of the second-generation (Gen2) electrolyte over the first-generation (Gen1) electrolyte in the first 200 cycles, beyond which the advantages of Gen2 electrolyte disappear. Addition of more FEC and VC additives to Gen2 electrolyte does not offer significant advantages in the cycle stability and specific capacities. However, very high FEC electrolytes with 20 wt% FEC and 80% dimethyl carbonate exhibits strong dependance on the lithiation cutoff voltage. This electrolyte results in durable SEI layers when the lithiation cutoff voltage is at 0.01 V vs Li/Li+. Furthermore, lowering the lithiation cutoff voltage from 0.1 V to 0.01 V vs Li/Li+has raised the specific capacity of Si-based anodes, leading to higher specific capacities than those of graphite anodes at the electrode level for 380 cycles investigated in this study. The understandings developed here provide unambiguous guidelines for selection of electrolytes to achieve long cycle stability and high specific capacity of Si-based cells simultaneously in the future. 
    more » « less
  2. The performance of the rechargeable Li metal battery anode is limited by the poor ionic conductivity and poor mechanical properties of its solid-electrolyte interphase (SEI) layer. To overcome this, a 3 : 1 v/v ethyl methyl carbonate (EMC) : fluoroethylene carbonate (FEC) containing 0.8 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and 0.2 M lithium difluoro(oxalate)borate (LiDFOB) dual-salts with 0.05 M lithium hexafluorophosphate (LiPF 6 ) was tested to promote the formation of a multitude of SEI-beneficial species. The resulting SEI layer was rich in LiF, Li 2 CO 3 , oligomeric and glass borates, Li 3 N, and Li 2 S, which enhanced its role as a protective yet Li + conductive film, stabilizing the lithium metal anode and minimizing dead lithium build-up. With a stable SEI, a Li/Li[Ni 0.59 Co 0.2 Mn 0.2 Al 0.01 ]O 2 Li-metal battery (LMB) retains 75% of its 177 mA h g −1 specific discharge capacity for 500 hours at a coulombic efficiency of greater than 99.3% at the fast charge–discharge rate of 1.8 mA cm −2 . 
    more » « less
  3. null (Ed.)
    Sodium metal battery (SMB, NMB) anodes can become dendritic due to an electrochemically unstable native Na-based solid electrolyte interphase (SEI). Herein Li-ion activated tin sulfide graphene nanocomposite membrane (A-SnS–G) is employed as an artificial SEI layer, allowing cyclability of record-thin 100 μm Na metal foils. The thin Na metal is prepared by a self-designed metallurgical rolling protocol. A-SnS–G is initially placed onto the polypropylene (PP) separator but becomes in situ transferred onto the Na metal surface. Symmetric metal cells protected by A-SnS–G achieve low-overpotential extended high-rate cycling in a standard carbonate electrolyte (EC : DEC = 1 : 1, 5% FEC). Accumulated capacity of 1000 mA h cm −2 is obtained after 500 cycles at 4 mA cm −2 , with accumulated capacity-to-foil capacity (A/F) ratio of 90.9. This is among the most favorable cycle life, accumulated capacity, and anode utilization combinations reported. Protection by non-activated SnS–G membrane yields significantly worse cycling, albeit still superior to the baseline unprotected sodium. Post-mortem and dedicated light optical analysis indicate that metal swelling, dendrite growth and dead metal formation is extensive for the unprotected sample, but is suppressed with A-SnS–G. Per XPS, post-100 cycles near-surface structure of A-SnS–G is rich in metallic Sn alloys and inorganic carbonate salts. Even after 300 cycles, Li-based SEI components ROCO 2 -Li, Li 2 CO 3 and LiF are detected with A-SnS–G. As a proof of principle, an SMB with a high mass loading (6 mg cm −2 ) NVP cathode and a A-SnS–G protected anode delivered extended cyclability, achieving 74 mA h g −1 after 400 cycles at 0.4C. 
    more » « less
  4. Designing the solid–electrolyte interphase (SEI) is critical for stable, fast-charging, low-temperature Li-ion batteries. Fostering a “fluorinated interphase,” SEI enriched with LiF, has become a popular design strategy. Although LiF possesses low Li-ion conductivity, many studies have reported favorable battery performance with fluorinated SEIs. Such a contradiction suggests that optimizing SEI must extend beyond chemical composition design to consider spatial distributions of different chemical species. In this work, we demonstrate that the impact of a fluorinated SEI on battery performance should be evaluated on a case-by-case basis. Sufficiently passivating the anode surface without impeding Li-ion transport is key. We reveal that a fluorinated SEI containing excessive and dense LiF severely impedes Li-ion transport. In contrast, a fluorinated SEI with well-dispersed LiF (i.e., small LiF aggregates well mixed with other SEI components) is advantageous, presumably due to the enhanced Li-ion transport across heterointerfaces between LiF and other SEI components. An electrolyte, 1 M LiPF6in 2-methyl tetrahydrofuran (2MeTHF), yields a fluorinated SEI with dispersed LiF. This electrolyte allows anodes of graphite, μSi/graphite composite, and pure Si to all deliver a stable Coulombic efficiency of 99.9% and excellent rate capability at low temperatures. Pouch cells containing layered cathodes also demonstrate impressive cycling stability over 1,000 cycles and exceptional rate capability down to −20 °C. Through experiments and theoretical modeling, we have identified a balanced SEI-based approach that achieves stable, fast-charging, low-temperature Li-ion batteries. 
    more » « less
  5. Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm􀀀 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs. 
    more » « less