skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How Can ChatGPT Help in Automated Building Code Compliance Checking?
One main challenge in the full automation of building code compliance checking is in the extraction and transformation of building code requirements into computable representations. Semantic rule-based approach has been taken mainly due to its expected better performance than machine learning-based approach on this particular task. With the recent advancement in deep learning AI, particularly the launch of ChatGPT by OpenAI, there is a potential for this landscape to be shifted given the highly regarded capabilities of ChatGPT in processing (i.e., understanding and generating) natural language texts and computer codes. In this paper, the author preliminarily explored the use of ChatGPT in converting (i.e., extracting and transforming) building code requirements into computer codes, and compared it with the results from cutting-edge semantic rule-based approach. It was found that comparing to the semantic rule-based approach, the conversion results from ChatGPT still has limitations, but there is a great potential for it to help speed up the implementation and scale-up of automated building code compliance checking systems.  more » « less
Award ID(s):
1827733
PAR ID:
10518750
Author(s) / Creator(s):
Publisher / Repository:
The International Association for Automation and Robotics in Construction
Date Published:
ISSN:
2413-5844
ISBN:
978-0-6458322-0-4
Subject(s) / Keyword(s):
Automated building code compliance checking AI ChatGPT SNACC Natural language processing
Format(s):
Medium: X
Location:
Chennai, India
Sponsoring Org:
National Science Foundation
More Like this
  1. Most of the existing automated code compliance checking (ACC) methods are unable to fully automatically convert complex building-code requirements into computer-processable forms. Such complex requirements usually have hierarchically complex clause and sentence structures. There is, thus, a need to decompose such complex requirements into hierarchies of much smaller, manageable requirement units that would be processable using most of the existing ACC methods. Rule-based methods have been used to deal with such complex requirements and have achieved high performance. However, they lack scalability, because the rules are developed manually and need to be updated and/or adapted when applied to a different type of building code. More research is, thus, needed to develop a scalable method to automatically convert the complex requirements into hierarchies of requirement units to facilitate the succeeding steps of ACC such as information extraction and compliance reasoning. To address this need, this paper proposes a new, machine learning-based method to automatically extract requirement hierarchies from building codes. The proposed method consists of five main steps: (1) data preparation and preprocessing; (2) data adaptation; (3) deep neural network model training for dependency parsing; (4) automated requirement segmentation and restriction interpretation based on the extracted dependencies; and (5) evaluation. The proposed method was trained using the English Treebank data; and was tested on sentences from the 2009 International Building Code (IBC) and the Champaign 2015 IBC Amendments. The preliminary results show that the proposed method achieved an average normalized edit distance of 0.32, a precision of 89%, a recall of 76%, and an F1-measure of 82%, which indicates good requirement hierarchy extraction performance. 
    more » « less
  2. Traditional manual building code compliance checking is costly, time-consuming, and human error-prone. With the adoption of Building Information Modeling (BIM), automation in such a checking process becomes more feasible. However, existing methods still face limited automation when applied to different building codes. To address that, in this paper, the authors proposed a new framework that requires minimal input from users and strives for full automation, namely, the Invariant signature, logic reasoning, and Semantic Natural language processing (NLP)-based Automated building Code compliance Checking (I-SNACC) framework. The authors developed an automated building code compliance checking (ACC) prototype system under this framework and tested it on Chapter 10 of the International Building Codes 2015 (IBC 2015). The system was tested on two real projects and achieved 95.2% precision and 100% recall in non-compliance detection. The experiment showed that the framework is promising in building code compliance checking. Compared to the state-of-the-art methods, the new framework increases the degree of automation and saves manual efforts for finding non-compliance cases. 
    more » « less
  3. Issa, R. (Ed.)
    Automated checking of the compliance of building information modeling (BIM)-based building designs with relevant codes and regulations requires bridging the semantic gap between the Industry Foundation Classes (IFC) schema and the natural language. In most of the existing automated compliance checking (ACC) systems, the integration of the IFC schema and natural language is realized through hardcoding or predefined rules, ontologies, or dictionaries. These methods require intensive manual engineering effort and are often rigid and difficult to generalize. There is, thus, a need for an automated and meanwhile flexible and generalizable information integration method. To address this need, this paper leverages transformer-based language models to learn the semantic representations of concepts in the building information models (BIMs) and regulatory documents. An automated IFC-regulatory information integration approach based on these learned semantic representations is proposed. The preliminary experimental results show that the proposed approach achieved promising performance—an accuracy of 80%—on integrating IFC and regulatory concepts. 
    more » « less
  4. Tang, P.; Grau, D.; El Asmar, M. (Ed.)
    Existing automated code checking (ACC) systems require the extraction of requirements from regulatory textual documents into computer-processable rule representations. The information extraction processes in those ACC systems are based on either human interpretation, manual annotation, or predefined automated information extraction rules. Despite the high performance they showed, rule-based information extraction approaches, by nature, lack sufficient scalability—the rules typically need some level of adaptation if the characteristics of the text change. Machine learning-based methods, instead of relying on hand-crafted rules, automatically capture the underlying patterns of the existing training text and have a great capability of generalizing to a variety of texts. A more scalable, machine learning-based approach is thus needed to achieve a more robust performance across different types of codes/documents for automatically generating semantically-enriched building-code sentences for the purpose of ACC. To address this need, this paper proposes a machine learning-based approach for generating semantically-enriched building-code sentences, which are annotated syntactically and semantically, for supporting IE. For improved robustness and scalability, the proposed approach uses transfer learning strategies to train deep neural network models on both general-domain and domain-specific data. The proposed approach consists of four steps: (1) data preparation and preprocessing; (2) development of a base deep neural network model for generating semantically-enriched building-code sentences; (3) model training using transfer learning strategies; and (4) model evaluation. The proposed approach was evaluated on a corpus of sentences from the 2009 International Building Code (IBC) and the Champaign 2015 IBC Amendments. The preliminary results show that the proposed approach achieved an optimal precision of 88%, recall of 86%, and F1-measure of 87%, indicating good performance. 
    more » « less
  5. To allow full automation of building code compliance checking with different building design models and codes/regulations, input building design models need to be automatically validated. Automated architecture, engineering, and construction (AEC) object identification with high accuracy is essential for such validation. For example, in order to check egress requirements, exits of a building (and their presence or absence) need to be identified automatically through object identification. To address that, the authors propose a new AEC object identification algorithm that can identify needed code checking concepts from building design models based on the invariant signatures of AEC objects, which consisted of Cartesian points-based geometry, relative location and orientation, and material mechanical properties. Building design models in industry foundation classes (IFC) format are processed into invariant signatures, which can fully represent the model data and convert them into computable representations to support automated compliance reasoning. A systematic implementation of the above invariant signatures-based object identification algorithm can be used to automatically conduct building design model validation for code compliance checking preparation. An experimental testing on Chapters 4 and 8 of the International Building Code 2015 and a convenience store design model showed the model validation using the proposed identification algorithms successfully validated ceiling and interior door concepts. Comparing to the manual validation used in current practice, this new object identification algorithm is more efficient in supporting model validation for automated building code compliance checking. 
    more » « less