skip to main content


This content will become publicly available on March 1, 2025

Title: Anatomy of a mega‐radiation: Biogeography and niche evolution in Astragalus
Abstract Premise

Astragalus(Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid‐adapted clade and what sets it apart from close relatives with far less species richness.

Methods

Here, for the first time using extensive phylogenetic sampling, we asked whether (1)Astragalusis uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity ofAstragalusis attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whetherAstragalusoriginated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents.

Results

Our results point to the importance of heterogeneity in the diversification ofAstragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway.

Conclusions

Our investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging “mega‐radiations.” Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species‐rich clades.

 
more » « less
Award ID(s):
2027654
PAR ID:
10518755
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
NSF Public Access Repository (NSF-PAR)
Date Published:
Journal Name:
American Journal of Botany
Volume:
111
Issue:
3
ISSN:
0002-9122
Subject(s) / Keyword(s):
abiotic Astragalus diversification edaphic Fabaceae legume mega‐genus species richness
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The megadiverse genusCarex(c. 2000 species, Cyperaceae) has a nearly cosmopolitan distribution, displaying an inverted latitudinal richness gradient with higher species diversity in cold‐temperate areas of the Northern Hemisphere. Despite great expansion in our knowledge of the phylogenetic history of the genus and many molecular studies focusing on the biogeography of particular groups during the last few decades, a global analysis ofCarexbiogeography and diversification is still lacking. For this purpose, we built the hitherto most comprehensiveCarex‐dated phylogeny based on three markers (ETS–ITS–matK), using a previous phylogenomic Hyb‐Seq framework, and a sampling of two‐thirds of its species and all recognized sections. Ancestral area reconstruction, biogeographic stochastic mapping, and diversification rate analyses were conducted to elucidate macroevolutionary biogeographic and diversification patterns. Our results reveal thatCarexoriginated in the late Eocene in E Asia, where it probably remained until the synchronous diversification of its main subgeneric lineages during the late Oligocene. E Asia is supported as the cradle ofCarexdiversification, as well as a “museum” of extant species diversity. Subsequent “out‐of‐Asia” colonization patterns feature multiple asymmetric dispersals clustered toward present times among the Northern Hemisphere regions, with major regions acting both as source and sink (especially Asia and North America), as well as several independent colonization events of the Southern Hemisphere. We detected 13 notable diversification rate shifts during the last 10 My, including remarkable radiations in North America and New Zealand, which occurred concurrently with the late Neogene global cooling, which suggests that diversification involved the colonization of new areas and expansion into novel areas of niche space.

     
    more » « less
  2. Abstract Aim

    Mountains provide uniquely informative systems for examining how biodiversity is distributed and identifying the causes of those patterns. Elevational patterns of species richness are well‐documented for many taxa but comparatively few studies have investigated patterns in multiple dimensions of biodiversity along mountainsides, which can reveal the underlying processes at play. Here, we use trait‐based diversity patterns to determine the role of abiotic filters and competition in the assembly of communities of small mammals across elevation and evaluate the surrogacy of taxonomic, functional, and phylogenetic dimensions of diversity.

    Location

    Great Basin ecoregion, western North America.

    Taxon

    Rodents and shrews.

    Methods

    The elevational distributions of 34 species were determined from comprehensive field surveys conducted in three arid, temperate mountain ranges. Elevation–diversity relationships and community assembly processes were inferred from phylogenetic (PD) and functional diversity (FD) patterns of mean pairwise and mean nearest‐neighbor distances while accounting for differences in species richness. FD indices were calculated separately for traits related to either abiotic filtering (β‐niche traits) or biotic interactions (α‐niche traits) to test explicit predictions of the role of each across elevation.

    Results

    Trait‐based tests of processes indicated that abiotic filtering tied to a strong aridity gradient drives the assembly of both low‐ and high‐elevation communities. Support for competition was not consistent with theoretical expectations under the stress‐dominance hypothesis, species interactions‐abiotic stress hypothesis, or guild assembly rule. Mid‐elevation peaks in species richness contrasted with overall FD and PD, which generally increased with elevation. PD and total FD were correlated on two of three mountains.

    Main conclusions

    The functional diversity of small mammal communities in these arid, temperate mountains is most consistent with abiotic filters, whereas support for competition is weak. Decomposing FD into traits related to separate assembly processes and examining ecoregional variation in diversity were critical for uncovering the generality of mechanisms. Divergent patterns among dimensions revealed species richness to be a poor surrogate for PD and FD across elevation and reflect the effect of biogeographic and evolutionary history. This first analysis of elevational multidimensional diversity gradients for temperate mammals provides a versatile framework for future comparative studies.

     
    more » « less
  3. Abstract Aim

    Are different fruit colours related to large‐scale patterns of dispersal, distribution and diversification? Here, we investigate this question for the first time, using phylogenetic approaches in the tribe Gaultherieae (Ericaceae). We test relationships between fruit colour and (a) biogeographic dispersal, (b) elevational and latitudinal species distributions and (c) rates of diversification.

    Location

    Global.

    Time period

    Recent to 30 million years ago.

    Major taxa studied

    The plant tribe Gaultherieae in the family Ericaceae (blueberries and relatives).

    Methods

    We estimated a new time‐calibrated phylogeny for Gaultherieae. Data on fruit colours and geographic distributions for each species were compiled from published sources and field observations. Using phylogenetic methods, we estimated major dispersal events across the tree and the most likely fruit colour associated with each dispersal event, and tested whether dispersal between major biogeographic regions was equally likely for different fruit colours, and whether dispersal distances were larger for certain colours. We then tested the relationships between fruit colours and geographic variables (latitude, elevation) and diversification rates.

    Results

    Large‐scale dispersal events were significantly associated with red‐fruited lineages, even though red‐fruited species were relatively uncommon. Further, different fruit colours were associated with different elevations and latitudes (e.g. red at lower elevations, violet at lower latitudes, white at higher elevations). Violet colour was related to increased diversification rates, leading to more violet‐fruited species globally.

    Main conclusions

    Overall, we show that different fruit colours can significantly impact the large‐scale dispersal, distribution and diversification of plant clades. Furthermore, the interplay between biogeography and fruit‐colour evolution seems to generate “taxon cycles” in fruit colour that may drive variation in fruit colour over macroevolutionary time‐scales.

     
    more » « less
  4. Abstract Aim

    Species adapt differently to contrasting environments, such as open habitats with sparse vegetation and forested habitats with dense forest cover. We investigated colonization patterns in the open and forested environments in the diagonal of open formations and surrounding rain forests (i.e. Amazonia and Atlantic Forest) in Brazil, tested whether the diversification rates were affected by the environmental conditions and identified traits that enabled species to persist in those environments.

    Location

    South America, Brazil.

    Taxon

    Squamata, Lizards.

    Methods

    We used phylogenetic information and the current distribution of species in open and forested habitats to estimate ancestral ranges and identify range shifts relative to the current habitats. To evaluate whether these environments influenced species diversification, we tested 12 models using a Hidden Geographic State Speciation and Extinction analysis. Finally, we combined phylogenetic relatedness and species traits in a machine learning framework to identify the traits permitting adaptation in those contrasting environments.

    Results

    We identified 41 total transitions between open and forested habitats, of which 80% were from the forested habitats to the open habitats. Widely distributed species had higher speciation, turnover, extinction, and extinction fraction rates than species in forested or open habitats, but had also the lower net diversification rate. Mean body temperature, microhabitat, female snout–vent length and diet were identified as putative traits that enabled adaptation to different environments, and phylogenetic relatedness was an important predictor of species occurrence.

    Main conclusions

    Transitions from forested to open habitats are most common, highlighting the importance of habitat shift in current patterns of biodiversity. The combination of phylogenetic reconstruction of ancestral distributions and the machine learning framework enables us to integrate organismal trait data, environmental data and evolutionary history in a manner that could be applied on a global scale.

     
    more » « less
  5. Abstract Aim

    To determine the historical dynamics of colonization and whether the relative timing of colonization predicts diversification rate in the species‐rich, murine rodent communities of Indo‐Australia.

    Location

    Indo‐Australian Archipelago including the Sunda shelf of continental Asia, Sahul shelf of continental Australia, the Philippines and Wallacea of Indonesia.

    Taxon

    Order Rodentia, Family Muridae.

    Methods

    We used a fossil‐calibrated molecular phylogeny and Bayesian biogeographical modelling to infer the frequency and temporal sequence of biogeographical transitions among Sunda, Sahul, the Philippines and Wallacea. We estimated diversification rates for each colonizing lineage using a method‐of‐moments estimator of net diversification and Bayesian mixture model estimates of diversification rate shifts.

    Results

    We identified 17 biogeographical transitions, including nine originating from Sunda, seven originating from Sulawesi and broader Wallacea and one originating from Sahul. Wallacea was colonized eight times, the Phillipines five times, Sunda twice and Sahul twice. Net diversification rates ranged from 0.2 to 2.12 species/lineage/My with higher rates in secondary and later colonizers than primary colonizers. The highest rates were in the genusRattusand their closest relatives, irrespective of colonization history.

    Main Conclusions

    Our inferences from murines demonstrate once again the substantial role of islands as sources of species diversity in terrestrial vertebrates of the IAA with most speciation events occurring on islands. Sulawesi and broader Wallacea have been a major source of colonists for both island and continental systems. Crossings of Wallace's Line were more common than subsequent transitions across Lydekker's Line to the east. While speciation following colonization of oceanic archipelagos and large islands is consistent with adaptive radiation theory and ideas regarding ecological opportunity, we did not observe a strong signal of incumbency effects. Rather, subsequent colonists of landmasses radiated unhindered by previous radiations.

     
    more » « less