skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1916632

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract AimQuantifying the phylogenetic diversity of temperate trees is essential for understanding the processes that have shaped the modern distribution of temperate broadleaf forest and other major forest biomes. Here, we focus on Fagales, an iconic member of forests worldwide, to uncover global diversity and endemism patterns and investigate the distribution of root nodule symbiosis (RNS), an important morphological specialisation in this clade, as a key factor behind these patterns. LocationGlobal. TaxonFagales. MethodsWe combined phylogenetic data covering 60.2% of living species, fine‐scale distribution models covering 90% of species, and nodulation data covering all species to investigate the distribution of species richness and phylogenetic diversity at fine spatial scales compared to the distribution of RNS. We identify abiotic environmental factors associated with RNS and with Fagales diversity in general. ResultsWe find the highest species richness in temperate east Asia, eastern North America, and equatorial montane regions of Asia and Central America. By contrast, relative phylogenetic diversity (RPD) is highest at higher latitudes, where RNS also predominates. We found a strong spatial structuring of regionalisations of Fagales floras, reflecting distinct Northern and Southern Hemisphere floras (except a unique Afro‐Boreal region), each with distinct RNS‐environment relationships. Main ConclusionsAlthough species richness and phylogenetic regionalisation for Fagales accord well with traditional biogeographic concepts for temperate forests, this is not the case for RPD. RNS is almost universal in the highest RPD regions, which may reflect ecological filtering promoting RNS in these regions. Our results highlight the utility of global‐scale, clade‐specific spatial phylogenetics and its utility for understanding drivers of diversity in species‐rich clades. 
    more » « less
  2. Abstract PremiseAstragalus(Fabaceae), with more than 3000 species, represents a globally successful radiation of morphologically highly similar species predominant across the northern hemisphere. It has attracted attention from systematists and biogeographers, who have asked what factors might be behind the extraordinary diversity of this important arid‐adapted clade and what sets it apart from close relatives with far less species richness. MethodsHere, for the first time using extensive phylogenetic sampling, we asked whether (1)Astragalusis uniquely characterized by bursts of radiation or whether diversification instead is uniform and no different from closely related taxa. Then we tested whether the species diversity ofAstragalusis attributable specifically to its predilection for (2) cold and arid habitats, (3) particular soils, or to (4) chromosome evolution. Finally, we tested (5) whetherAstragalusoriginated in central Asia as proposed and (6) whether niche evolutionary shifts were subsequently associated with the colonization of other continents. ResultsOur results point to the importance of heterogeneity in the diversification ofAstragalus, with upshifts associated with the earliest divergences but not strongly tied to any abiotic factor or biogeographic regionalization tested here. The only potential correlate with diversification we identified was chromosome number. Biogeographic shifts have a strong association with the abiotic environment and highlight the importance of central Asia as a biogeographic gateway. ConclusionsOur investigation shows the importance of phylogenetic and evolutionary studies of logistically challenging “mega‐radiations.” Our findings reject any simple key innovation behind high diversity and underline the often nuanced, multifactorial processes leading to species‐rich clades. 
    more » « less
  3. Abstract PremisePlant trait data are essential for quantifying biodiversity and function across Earth, but these data are challenging to acquire for large studies. Diverse strategies are needed, including the liberation of heritage data locked within specialist literature such as floras and taxonomic monographs. Here we report FloraTraiter, a novel approach using rule‐based natural language processing (NLP) to parse computable trait data from biodiversity literature. MethodsFloraTraiter was implemented through collaborative work between programmers and botanical experts and customized for both online floras and scanned literature. We report a strategy spanning optical character recognition, recognition of taxa, iterative building of traits, and establishing linkages among all of these, as well as curational tools and code for turning these results into standard morphological matrices. ResultsOver 95% of treatment content was successfully parsed for traits with <1% error. Data for more than 700 taxa are reported, including a demonstration of common downstream uses. ConclusionsWe identify strategies, applications, tips, and challenges that we hope will facilitate future similar efforts to produce large open‐source trait data sets for broad community reuse. Largely automated tools like FloraTraiter will be an important addition to the toolkit for assembling trait data at scale. 
    more » « less
  4. ABSTRACT Although the frequency of ancient hybridization across the Tree of Life is greater than previously thought, little work has been devoted to uncovering the extent, timeline, and geographic and ecological context of ancient hybridization. Using an expansive new dataset of nuclear and chloroplast DNA sequences, we conducted a multifaceted phylogenomic investigation to identify ancient reticulation in the early evolution of oaks (Quercus). We document extensive nuclear gene tree and cytonuclear discordance among major lineages ofQuercusand relatives in Quercoideae. Our analyses recovered clear signatures of gene flow against a backdrop of rampant incomplete lineage sorting, with gene flow most prevalent among major lineages ofQuercusand relatives in Quercoideae during their initial radiation, dated to the Early‐Middle Eocene. Ancestral reconstructions including fossils suggest ancestors ofCastanea + Castanopsis,Lithocarpus, and the Old World oak clade probably co‐occurred in North America and Eurasia, while the ancestors ofChrysolepis, Notholithocarpus, and the New World oak clade co‐occurred in North America, offering ample opportunity for hybridization in each region. Our study shows that hybridization—perhaps in the form of ancient syngameons like those seen today—has been a common and important process throughout the evolutionary history of oaks and their relatives. Concomitantly, this study provides a methodological framework for detecting ancient hybridization in other groups. 
    more » « less
  5. Abstract AimNitrogen (N)‐fixing plants are an important component of global plant communities, but the drivers of N‐fixing plant diversity, especially in temperate regions, remain underexplored. Here, we examined broad‐scale patterns of N‐fixing and non‐fixing plant phylogenetic diversity (PD) and species richness (SR) across a wide portion of temperate North America, focusing on relationships with soil N and aridity. We also tested whether exotic species, with and without N‐fixing symbiosis, have fewer abiotic limitations compared with native species. LocationUSA and Puerto Rico. Time periodCurrent. Major taxa studiedVascular plants, focusing on N‐fixing groups (orders Fabales, Fagales, Rosales and Cucurbitales). MethodsWe subset National Ecological Observatory Network (NEON) plant plot data from all sites along two axes (N fixing–non‐N fixing and native–exotic), calculating plot‐level SR, PD and mean pairwise phylogenetic distance (MPD). We then used linear mixed models to investigate relationships between diversity values and key soil measurements, along with aridity, temperature and fire frequency. ResultsAridity was the sole predictor of proportional phylogenetic diversity of N fixers. The SR of N fixers still decreased marginally in arid regions, whereas native N‐fixer MPD increased with aridity, indicative of unique lineages of N fixers in the driest conditions, in contrast to native non‐N fixers. The SR of both native N fixers and non‐N fixers increased in low‐N soils. Aridity did not affect SR of exotic non‐N fixers, unlike other groups, whereas exotic N fixers showed lower MPD in increasingly high‐N soils, suggesting filtering, contrary what was found for native N fixers. Main conclusionsOur results suggest that it is not nitrogen, or any soil nutrient, that has the strongest effect on the relative success of N fixers in plant communities. Rather, aridity is the key driver, at least for native species, in line with empirical results from other biomes and increased understanding of N fixation as a key mechanism to avoid water loss. 
    more » « less
  6. Abstract Astragalus(Fabaceae) is astoundingly diverse in temperate, cold arid regions of Earth, positioning this group as a model clade for investigating the distribution of plant diversity in the face of environmental challenges. Here, we identify the spatial distribution of diversity and endemism inAstragalususing species distribution models for 752 species and a phylogenetic tree comprising 847 species. We integrated these to map centers of species richness (SR) and relative phylogenetic diversity (RPD) and used randomization approaches to investigate centers of endemism. We also used clustering methods to identify phylogenetic regionalizations. We then assembled predictor variables of current climate conditions to test environmental factors predicting these phylogenetic diversity results, especially temperature and precipitation seasonality. We find that SR centers are distributed globally at temperate middle latitudes in arid regions, but the Mediterranean Basin is the most important center of RPD. Endemism centers also occur globally, but Iran represents a key endemic area with a concentration of both paleo‐ and neoendemism. Phylogenetic regionalization recovered an east‐west gradient in Eurasia and an amphitropical disjunction across North and South America; American phyloregions are overall most closely related to east and central Asia. SR, RPD, and lineage turnover are driven mostly by precipitation and seasonality, but endemism is driven primarily by diurnal temperature variation. Endemism and regionalization results point to western Asia and especially Iran as a biogeographic gateway between Europe and Asia. RPD and endemism highlight the importance of temperature and drought stress in determining plant diversity and endemism centers. 
    more » « less
  7. PremiseRecent advances in generating large‐scale phylogenies enable broad‐scale estimation of species diversification. These now common approaches typically are characterized by (1) incomplete species coverage without explicit sampling methodologies and/or (2) sparse backbone representation, and usually rely on presumed phylogenetic placements to account for species without molecular data. We used empirical examples to examine the effects of incomplete sampling on diversification estimation and provide constructive suggestions to ecologists and evolutionary biologists based on those results. MethodsWe used a supermatrix for rosids and one well‐sampled subclade (Cucurbitaceae) as empirical case studies. We compared results using these large phylogenies with those based on a previously inferred, smaller supermatrix and on a synthetic tree resource with complete taxonomic coverage. Finally, we simulated random and representative taxon sampling and explored the impact of sampling on three commonly used methods, both parametric (RPANDA and BAMM) and semiparametric (DR). ResultsWe found that the impact of sampling on diversification estimates was idiosyncratic and often strong. Compared to full empirical sampling, representative and random sampling schemes either depressed or inflated speciation rates, depending on methods and sampling schemes. No method was entirely robust to poor sampling, but BAMM was least sensitive to moderate levels of missing taxa. ConclusionsWe suggest caution against uncritical modeling of missing taxa using taxonomic data for poorly sampled trees and in the use of summary backbone trees and other data sets with high representative bias, and we stress the importance of explicit sampling methodologies in macroevolutionary studies. 
    more » « less
  8. Abstract A hallmark of flowering plants is their ability to invade some of the most extreme and dynamic habitats, including cold and dry biomes, to a far greater extent than other land plants. Recent work has provided insight to the phylogenetic distribution and evolutionary mechanisms which have enabled this success, yet needed is a synthesis of evolutionary perspectives with plant physiological traits, morphology, and genomic diversity. Linking these disparate components will not only lead to better understand the evolutionary parallelism and diversification of plants with these two strategies, but also to provide the framework needed for directing future research. We summarize the primary physiological and structural traits involved in response to cold‐ and drought stress, outline the phylogenetic distribution of these adaptations, and describe the recurring association of these changes with rapid diversification events that occurred in multiple lineages over the past 15 million years. Across these threefold facets of dry‐cold correlation (traits, phylogeny, and time) we stress the contrast between (a) the amazing diversity of solutions flowering plants have developed in the face of extreme environments and (b) a broad correlation between cold and dry adaptations that in some cases may hint at deep common origins. 
    more » « less
  9. Traditionally, the generation and use of biodiversity data and their associated specimen objects have been primarily the purview of individuals and small research groups. While deposition of data and specimens in herbaria and other repositories has long been the norm, throughout most of their history, these resources have been accessible only to a small community of specialists. Through recent concerted efforts, primarily at the level of national and international governmental agencies over the last two decades, the pace of biodiversity data accumulation has accelerated, and a wider array of biodiversity scientists has gained access to this massive accumulation of resources, applying them to an ever‐widening compass of research pursuits. We review how these new resources and increasing access to them are affecting the landscape of biodiversity research in plants today, focusing on new applications across evolution, ecology, and other fields that have been enabled specifically by the availability of these data and the global scope that was previously beyond the reach of individual investigators. We give an overview of recent advances organized along three lines: broad‐scale analyses of distributional data and spatial information, phylogenetic research circumscribing large clades with comprehensive taxon sampling, and data sets derived from improved accessibility of biodiversity literature. We also review synergies between large data resources and more traditional data collection paradigms, describe shortfalls and how to overcome them, and reflect on the future of plant biodiversity analyses in light of increasing linkages between data types and scientists in our field. 
    more » « less
  10. Phylogenetic datasets are now commonly generated using short-read sequencing technologies unhampered by degraded DNA, such as that often extracted from herbarium specimens. The compatibility of these methods with herbarium specimens has precipitated an increase in broad sampling of herbarium specimens for inclusion in phylogenetic studies. Understanding which sample characteristics are predictive of sequencing success can guide researchers in the selection of tissues and specimens most likely to yield good results. Multiple recent studies have considered the relationship between sample characteristics and DNA yield and sequence capture success. Here we report an analysis of the relationship between sample characteristics and sequencing success for nearly 8,000 herbarium specimens. This study, the largest of its kind, is also the first to include a measure of specimen quality (“greenness”) as a predictor of DNA sequencing success. We found that taxonomic group and source herbarium are strong predictors of both DNA yield and sequencing success and that the most important specimen characteristics for predicting success differ for DNA yield and sequencing: greenness was the strongest predictor of DNA yield, and age was the strongest predictor of proportion-on-target reads recovered. Surprisingly, the relationship between age and proportion-on-target reads is the inverse of expectations; older specimens performed slightly better in our capture-based protocols. We also found that DNA yield itself is not a strong predictor of sequencing success. Most literature on DNA sequencing from herbarium specimens considers specimen selection for optimal DNA extraction success, which we find to be an inappropriate metric for predicting success using next-generation sequencing technologies. 
    more » « less