Abstract Antiferromagnetic van der Waals‐typeM2P2X6compounds provide a versatile material platform for studying 2D magnetism and relevant phenomena. Establishing ferromagnetism in 2D materials is technologically valuable. Though magnetism is generally tunable via a chemical way, it is challenging to induce ferromagnetism with isovalent chalcogen and bimetallic substitutions inM2P2X6. Here, we report co‐substitution of Cu1+and Cr3+for Ni2+in Ni2P2S6, creating CuxNi2(1‐x)CrxP2S6medium‐entropy alloys spanning a full substitution range (x= 0 to 1). Such substitution strategy leads to a unique evolution in crystal structure and magnetic phases that are distinct from traditional isovalent bimetallic doping, with Cu and Cr co‐substitution enhancing ferromagnetic correlations and generating a weak ferromagnetic phase in intermediate compositions. This aliovalent substitution strategy offers a universal approach for tuning layered magnetism in antiferromagnetic systems, which along with the potential for light‐matter interaction and high‐temperature ferroelectricity, can enable multifunctional device applications.
more »
« less
Effect of relative humidity, NO x , and ammonia on the physical properties of naphthalene secondary organic aerosols
Relative humidity, NOx, and NH3can all alter the molecular, optical, and hygroscopic properties of naphthalene SOAs, with a complex synergy between these factors.
more »
« less
- Award ID(s):
- 1853639
- PAR ID:
- 10518770
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- Environmental Science: Atmospheres
- Volume:
- 3
- Issue:
- 6
- ISSN:
- 2634-3606
- Page Range / eLocation ID:
- 991 to 1007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Eu5Sn2As6is a Zintl phase crystalizing in the orthorhombic space groupPbamwith one‐dimensional chains of corner‐shared SnAs4tetrahedra running in thec‐direction. Eu5Sn2As6has an impressive room temperature Seebeck of >100 μV/K and < – 100 μV/K at 600 K crossing fromp‐ ton‐type at 650 K. The maximum thermoelectric figure of merit,zT, for Eu5Sn2As6is small (0.075), comparable to that of the Zintl phase Ca5Al2Sb6whose thermoelectric performance was improved by doping Na onto the Ca sites. In this study, we show that the thermoelectric properties of Eu5Sn2As6can be improved by substituting with K or La. The series Eu5‐xKxSn2As6provides an increase in maximumzTof 0.22 forx=0.15 due to a decrease resistivity while the onset of bipolar conduction systematically increases in temperature. Upon La substitution, Eu5‐xLaxSn2As6results in a newn‐type Zintl phase across the temperature range of 300–800 K.more » « less
-
Abstract Synthesizing solids in molten fluxes enables the rapid diffusion of soluble species at temperatures lower than in solid‐state reactions, leading to crystal formation of kinetically stable compounds. In this study, we demonstrate the effectiveness of mixed hydroxide and halide fluxes in synthesizing complex Sr/Ag/Se in mixed LiOH/LiCl. We have accessed a series of two‐dimensional Sr(Ag1−xLix)2Se2layered phases. With increased LiOH/LiCl ratio or reaction temperature, Li partially substituted Ag to form solid solutions of Sr(Ag1−xLix)2Se2withxup to 0.45. In addition, a new type of intergrowth compound [Sr3Se2][(Ag1−xLix)2Se2] was synthesized upon further reaction of Sr(Ag1−xLix)2Se2with SrSe. Both Sr(Ag1−xLix)2Se2and [Sr3Se2][(Ag1−xLix)2Se2] exhibit a direct band gap, which increases with increasing Li substitution (x). Therefore, the band gap of Sr(Ag1−xLix)2Se2can be precisely tuned via fine‐tuningxthat is controlled by only the flux ratio and temperature.more » « less
-
Secondary‐ion mass spectrometry (SIMS) is used to determine impurity concentrations of carbon and oxygen in two scandium‐containing nitride semiconductor multilayer heterostructures: ScxGa1−xN/GaN and ScxAl1−xN/AlN grown by molecular beam epitaxy (MBE). In the ScxGa1−xN/GaN heterostructure grown in metal‐rich conditions on GaN–SiC template substrates with Sc contents up to 28 at%, the oxygen concentration is found to be below 1 × 1019 cm−3, with an increase directly correlated with the scandium content. In the ScxAl1−xN–AlN heterostructure grown in nitrogen‐rich conditions on AlN–Al2O3template substrates with Sc contents up to 26 at%, the oxygen concentration is found to be between 1019and 1021 cm−3, again directly correlated with the Sc content. The increase in oxygen and carbon takes place during the deposition of scandium‐alloyed layers.more » « less