skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Conditional score-based diffusion models for Bayesian inference in infinite dimensions
Since their initial introduction, score-based diffusion models (SDMs) have been successfully applied to solve a variety of linear inverse problems in finite-dimensional vector spaces due to their ability to efficiently approximate the posterior distribution. However, using SDMs for inverse problems in infinite-dimensional function spaces has only been addressed recently, primarily through methods that learn the unconditional score. While this approach is advantageous for some inverse problems, it is mostly heuristic and involves numerous computationally costly forward operator evaluations during posterior sampling. To address these limitations, we propose a theoretically grounded method for sampling from the posterior of infinite-dimensional Bayesian linear inverse problems based on amortized conditional SDMs. In particular, we prove that one of the most successful approaches for estimating the conditional score in finite dimensions—the conditional denoising estimator—can also be applied in infinite dimensions. A significant part of our analysis is dedicated to demonstrating that extending infinite-dimensional SDMs to the conditional setting requires careful consideration, as the conditional score typically blows up for small times, contrarily to the unconditional score. We conclude by presenting stylized and large-scale numerical examples that validate our approach, offer additional insights, and demonstrate that our method enables large-scale, discretization-invariant Bayesian inference.  more » « less
Award ID(s):
2308389
PAR ID:
10518799
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
NeurIPS
Date Published:
Volume:
37
Issue:
2023
ISSN:
0000-0000
Subject(s) / Keyword(s):
core-based diffusion
Format(s):
Medium: X
Location:
NeurIPS 2023
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel modular inference approach combining two different generative models — generative adversarial networks (GAN) and normalizing flows — to approximate the posterior distribution of physics-based Bayesian inverse problems framed in high-dimensional ambient spaces. We dub the proposed framework GAN-Flow. The proposed method leverages the intrinsic dimension reduction and superior sample generation capabilities of GANs to define a low-dimensional data-driven prior distribution. Once a trained GAN-prior is available, the inverse problem is solved entirely in the latent space of the GAN using variational Bayesian inference with normalizing flow-based variational distribution, which approximates low-dimensional posterior distribution by transforming realizations from the low-dimensional latent prior (Gaussian) to corresponding realizations of a low-dimensional variational posterior distribution. The trained GAN generator then maps realizations from this approximate posterior distribution in the latent space back to the high-dimensional ambient space. We also propose a two-stage training strategy for GAN-Flow wherein we train the two generative models sequentially. Thereafter, GAN-Flow can estimate the statistics of posterior-predictive quantities of interest at virtually no additional computational cost. The synergy between the two types of generative models allows us to overcome many challenges associated with the application of Bayesian inference to large-scale inverse problems, chief among which are describing an informative prior and sampling from the high-dimensional posterior. GAN-Flow does not involve Markov chain Monte Carlo simulation, making it particularly suitable for solving large-scale inverse problems. We demonstrate the efficacy and flexibility of GAN-Flow on various physics-based inverse problems of varying ambient dimensionality and prior knowledge using different types of GANs and normalizing flows. Notably, one of the applications we consider involves a 65,536-dimensional inverse problem of phase retrieval wherein an object is reconstructed from sparse noisy measurements of the magnitude of its Fourier transform. 
    more » « less
  2. Posterior sampling in high-dimensional spaces using generative models holds significant promise for various applications, including but not limited to inverse problems and guided generation tasks. Generating diverse posterior samples remains expensive, as existing methods require restarting the entire generative process for each new sample. In this work, we propose a posterior sampling approach that simulates Langevin dynamics in the noise space of a pre-trained generative model. By exploiting the mapping between the noise and data spaces which can be provided by distilled flows or consistency models, our method enables seamless exploration of the posterior without the need to re-run the full sampling chain, drastically reducing computational overhead. Theoretically, we prove a guarantee for the proposed noise-space Langevin dynamics to approximate the posterior, assuming that the generative model sufficiently approximates the prior distribution. Our framework is experimentally validated on image restoration tasks involving noisy linear and nonlinear forward operators applied to LSUN-Bedroom (256 x 256) and ImageNet (64 x 64) datasets. The results demonstrate that our approach generates high-fidelity samples with enhanced semantic diversity even under a limited number of function evaluations, offering superior efficiency and performance compared to existing diffusion-based posterior sampling techniques. 
    more » « less
  3. Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods available in the integrated software on several high-dimensional Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large (∼ 50×) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework. 
    more » « less
  4. null (Ed.)
    We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms. 
    more » « less
  5. The formulation of Bayesian inverse problems involves choosing prior distributions; choices that seem equally reason-able may lead to significantly different conclusions. We develop a computational approach to understand the impact of the hyperparameters defining the prior on the posterior statistics of the quantities of interest. Our approach relies on global sensitivity analysis (GSA) of Bayesian inverse problems with respect to the prior hyperparameters. This, however, is a challenging problem-a naive double loop sampling approach would require running a prohibitive number of Markov chain Monte Carlo (MCMC) sampling procedures. The present work takes a foundational step in making such a sensitivity analysis practical by combining efficient surrogate models and a tailored importance sampling approach. In particular, we can perform accurate GSA of posterior statistics of quantities of interest with respect to prior hyperparameters without the need to repeat MCMC runs. We demonstrate the effectiveness of the approach on a simple Bayesian linear inverse problem and a nonlinear inverse problem governed by an epidemiological model. 
    more » « less