skip to main content


Title: hIPPYlib: An Extensible Software Framework for Large-Scale Inverse Problems Governed by PDEs: Part I: Deterministic Inversion and Linearized Bayesian Inference
We present an extensible software framework, hIPPYlib, for solution of large-scale deterministic and Bayesian inverse problems governed by partial differential equations (PDEs) with (possibly) infinite-dimensional parameter fields (which are high-dimensional after discretization). hIPPYlib overcomes the prohibitively expensive nature of Bayesian inversion for this class of problems by implementing state-of-the-art scalable algorithms for PDE-based inverse problems that exploit the structure of the underlying operators, notably the Hessian of the log-posterior. The key property of the algorithms implemented in hIPPYlib is that the solution of the inverse problem is computed at a cost, measured in linearized forward PDE solves, that is independent of the parameter dimension. The mean of the posterior is approximated by the MAP point, which is found by minimizing the negative log-posterior with an inexact matrix-free Newton-CG method. The posterior covariance is approximated by the inverse of the Hessian of the negative log posterior evaluated at the MAP point. The construction of the posterior covariance is made tractable by invoking a low-rank approximation of the Hessian of the log-likelihood. Scalable tools for sample generation are also discussed. hIPPYlib makes all of these advanced algorithms easily accessible to domain scientists and provides an environment that expedites the development of new algorithms.  more » « less
Award ID(s):
1550547
NSF-PAR ID:
10275717
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACM Transactions on Mathematical Software
Volume:
47
Issue:
2
ISSN:
0098-3500
Page Range / eLocation ID:
1 to 34
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bayesian inference provides a systematic framework for integration of data with mathematical models to quantify the uncertainty in the solution of the inverse problem. However, the solution of Bayesian inverse problems governed by complex forward models described by partial differential equations (PDEs) remains prohibitive with black-box Markov chain Monte Carlo (MCMC) methods. We present hIPPYlib-MUQ, an extensible and scalable software framework that contains implementations of state-of-the art algorithms aimed to overcome the challenges of high-dimensional, PDE-constrained Bayesian inverse problems. These algorithms accelerate MCMC sampling by exploiting the geometry and intrinsic low-dimensionality of parameter space via derivative information and low rank approximation. The software integrates two complementary open-source software packages, hIPPYlib and MUQ. hIPPYlib solves PDE-constrained inverse problems using automatically-generated adjoint-based derivatives, but it lacks full Bayesian capabilities. MUQ provides a spectrum of powerful Bayesian inversion models and algorithms, but expects forward models to come equipped with gradients and Hessians to permit large-scale solution. By combining these two complementary libraries, we created a robust, scalable, and efficient software framework that realizes the benefits of each and allows us to tackle complex large-scale Bayesian inverse problems across a broad spectrum of scientific and engineering disciplines. To illustrate the capabilities of hIPPYlib-MUQ, we present a comparison of a number of MCMC methods available in the integrated software on several high-dimensional Bayesian inverse problems. These include problems characterized by both linear and nonlinear PDEs, various noise models, and different parameter dimensions. The results demonstrate that large (∼ 50×) speedups over conventional black box and gradient-based MCMC algorithms can be obtained by exploiting Hessian information (from the log-posterior), underscoring the power of the integrated hIPPYlib-MUQ framework. 
    more » « less
  2. null (Ed.)
    Abstract. We consider the problem of inferring the basal sliding coefficientfield for an uncertain Stokes ice sheet forward model from syntheticsurface velocity measurements. The uncertainty in the forward modelstems from unknown (or uncertain) auxiliary parameters (e.g., rheologyparameters). This inverse problem is posed within the Bayesianframework, which provides a systematic means of quantifyinguncertainty in the solution. To account for the associated modeluncertainty (error), we employ the Bayesian approximation error (BAE)approach to approximately premarginalize simultaneously over both thenoise in measurements and uncertainty in the forward model. We alsocarry out approximative posterior uncertainty quantification based ona linearization of the parameter-to-observable map centered at themaximum a posteriori (MAP) basal sliding coefficient estimate, i.e.,by taking the Laplace approximation. The MAP estimate is found byminimizing the negative log posterior using an inexact Newtonconjugate gradient method. The gradient and Hessian actions to vectorsare efficiently computed using adjoints. Sampling from theapproximate covariance is made tractable by invoking a low-rankapproximation of the data misfit component of the Hessian. We studythe performance of the BAE approach in the context of three numericalexamples in two and three dimensions. For each example, the basalsliding coefficient field is the parameter of primary interest whichwe seek to infer, and the rheology parameters (e.g., the flow ratefactor or the Glen's flow law exponent coefficient field) representso-called nuisance (secondary uncertain) parameters. Our resultsindicate that accounting for model uncertainty stemming from thepresence of nuisance parameters is crucial. Namely our findingssuggest that using nominal values for these parameters, as is oftendone in practice, without taking into account the resulting modelingerror, can lead to overconfident and heavily biased results. We alsoshow that the BAE approach can be used to account for the additionalmodel uncertainty at no additional cost at the online stage. 
    more » « less
  3. Abstract Obtaining lightweight and accurate approximations of discretized objective functional Hessians in inverse problems governed by partial differential equations (PDEs) is essential to make both deterministic and Bayesian statistical large-scale inverse problems computationally tractable. The cubic computational complexity of dense linear algebraic tasks, such as Cholesky factorization, that provide a means to sample Gaussian distributions and determine solutions of Newton linear systems is a computational bottleneck at large-scale. These tasks can be reduced to log-linear complexity by utilizing hierarchical off-diagonal low-rank (HODLR) matrix approximations. In this work, we show that a class of Hessians that arise from inverse problems governed by PDEs are well approximated by the HODLR matrix format. In particular, we study inverse problems governed by PDEs that model the instantaneous viscous flow of ice sheets. In these problems, we seek a spatially distributed basal sliding parameter field such that the flow predicted by the ice sheet model is consistent with ice sheet surface velocity observations. We demonstrate the use of HODLR Hessian approximation to efficiently sample the Laplace approximation of the posterior distribution with covariance further approximated by HODLR matrix compression. Computational studies are performed which illustrate ice sheet problem regimes for which the Gauss–Newton data-misfit Hessian is more efficiently approximated by the HODLR matrix format than the low-rank (LR) format. We then demonstrate that HODLR approximations can be favorable, when compared to global LR approximations, for large-scale problems by studying the data-misfit Hessian associated with inverse problems governed by the first-order Stokes flow model on the Humboldt glacier and Greenland ice sheet. 
    more » « less
  4. Abstract

    Uncertainty quantification of groundwater (GW) aquifer parameters is critical for efficient management and sustainable extraction of GW resources. These uncertainties are introduced by the data, model, and prior information on the parameters. Here, we develop a Bayesian inversion framework that uses Interferometric Synthetic Aperture Radar (InSAR) surface deformation data to infer the laterally heterogeneous permeability of a transient linear poroelastic model of a confined GW aquifer. The Bayesian solution of this inverse problem takes the form of a posterior probability density of the permeability. Exploring this posterior using classical Markov chain Monte Carlo (MCMC) methods is computationally prohibitive due to the large dimension of the discretized permeability field and the expense of solving the poroelastic forward problem. However, in many partial differential equation (PDE)‐based Bayesian inversion problems, the data are only informative in a few directions in parameter space. For the poroelasticity problem, we prove this property theoretically for a one‐dimensional problem and demonstrate it numerically for a three‐dimensional aquifer model. We design a generalized preconditioned Crank‐Nicolson (gpCN) MCMC method that exploits this intrinsic low dimensionality by using a low‐rank‐based Laplace approximation of the posterior as a proposal, which we build scalably. The feasibility of our approach is demonstrated through a real GW aquifer test in Nevada. The inherently two‐dimensional nature of InSAR surface deformation data informs a sufficient number of modes of the permeability field to allow detection of major structures within the aquifer, significantly reducing the uncertainty in the pressure and the displacement quantities of interest.

     
    more » « less
  5. SUMMARY

    We introduce a new finite-element (FE) based computational framework to solve forward and inverse elastic deformation problems for earthquake faulting via the adjoint method. Based on two advanced computational libraries, FEniCS and hIPPYlib for the forward and inverse problems, respectively, this framework is flexible, transparent and easily extensible. We represent a fault discontinuity through a mixed FE elasticity formulation, which approximates the stress with higher order accuracy and exposes the prescribed slip explicitly in the variational form without using conventional split node and decomposition discrete approaches. This also allows the first order optimality condition, that is the vanishing of the gradient, to be expressed in continuous form, which leads to consistent discretizations of all field variables, including the slip. We show comparisons with the standard, pure displacement formulation and a model containing an in-plane mode II crack, whose slip is prescribed via the split node technique. We demonstrate the potential of this new computational framework by performing a linear coseismic slip inversion through adjoint-based optimization methods, without requiring computation of elastic Green’s functions. Specifically, we consider a penalized least squares formulation, which in a Bayesian setting—under the assumption of Gaussian noise and prior—reflects the negative log of the posterior distribution. The comparison of the inversion results with a standard, linear inverse theory approach based on Okada’s solutions shows analogous results. Preliminary uncertainties are estimated via eigenvalue analysis of the Hessian of the penalized least squares objective function. Our implementation is fully open-source and Jupyter notebooks to reproduce our results are provided. The extension to a fully Bayesian framework for detailed uncertainty quantification and non-linear inversions, including for heterogeneous media earthquake problems, will be analysed in a forthcoming paper.

     
    more » « less