skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All Things Considered: Detecting Partisan Events from News Media with Cross-Article Comparison
Public opinion is shaped by the information news media provide, and that information in turn may be shaped by the ideological preferences of media outlets. But while much attention has been devoted to media bias via overt ideological language or topic selection, a more unobtrusive way in which the media shape opinion is via the strategic inclusion or omission of partisan events that may support one side or the other. We develop a latent variable-based framework to predict the ideology of news articles by comparing multiple articles on the same story and identifying partisan events whose inclusion or omission reveals ideology. Our experiments first validate the existence of partisan event selection, and then show that article alignment and cross-document comparison detect partisan events and article ideology better than competitive baselines. Our results reveal the high-level form of media bias, which is present even among mainstream media with strong norms of objectivity and nonpartisanship. Our codebase and dataset are available at https://github.com/launchnlp/ATC.  more » « less
Award ID(s):
2127747 2127746 2127749
PAR ID:
10518843
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Date Published:
Page Range / eLocation ID:
15472 to 15488
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. News media is expected to uphold unbiased reporting. Yet they may still affect public opinion by selectively including or omitting events that support or contradict their ideological positions. Prior work in NLP has only studied media bias via linguistic style and word usage. In this paper, we study to which degree media balances news reporting and affects consumers through event inclusion or omission. We first introduce the task of detecting both partisan and counter- partisan events: events that support or oppose the author’s political ideology. To conduct our study, we annotate a high-quality dataset, PAC, containing 8 , 511 (counter-)partisan event annotations in 304 news articles from ideologically diverse media outlets. We benchmark PAC to highlight the challenges of this task. Our findings highlight both the ways in which the news subtly shapes opinion and the need for large language models that better understand events within a broader context. Our dataset can be found at https://github.com/ launchnlp/Partisan-Event-Dataset. 
    more » « less
  2. Analyzing ideology and polarization is of critical importance in advancing our grasp of modern politics. Recent research has made great strides towards understanding the ideological bias (i.e., stance) of news media along the left-right spectrum. In this work, we instead take a novel and more nuanced approach for the study of ideology based on its left or right positions on the issue being discussed. Aligned with the theoretical accounts in political science, we treat ideology as a multi-dimensional construct, and introduce the first diachronic dataset of news articles whose ideological positions are annotated by trained political scientists and linguists at the paragraph level. We showcase that, by controlling for the author{'}s stance, our method allows for the quantitative and temporal measurement and analysis of polarization as a multidimensional ideological distance. We further present baseline models for ideology prediction, outlining a challenging task distinct from stance detection. 
    more » « less
  3. Prior work on ideology prediction has largely focused on single modalities, i.e., text or images. In this work, we introduce the task of multimodal ideology prediction, where a model predicts binary or five-point scale ideological leanings, given a text-image pair with political content. We first collect five new large-scale datasets with English documents and images along with their ideological leanings, covering news articles from a wide range of mainstream media in US and social media posts from Reddit and Twitter. We conduct in-depth analyses on news articles and reveal differences in image content and usage across the political spectrum. Furthermore, we perform extensive experiments and ablation studies, demonstrating the effectiveness of targeted pretraining objectives on different model components. Our best performing model, a late-fusion architecture pretrained with a triplet objective over multimodal content, outperforms the state-of-the-art text-only model by almost 4% and a strong multimodal baseline with no pretraining by over 3%. 
    more » « less
  4. Abstract We analyze social media activity during one of the largest protest mobilizations in US history to examine ideological asymmetries in the posting of news content. Using an unprecedented combination of four datasets (tracking offline protests, social media activity, web browsing, and the reliability of news sources), we show that there is no evidence of unreliable sources having any prominent visibility during the protest period, but we do identify asymmetries in the ideological slant of the sources shared on social media, with a clear bias towards right-leaning domains. These results support the “amplification of the right” thesis, which points to the structural conditions (social and technological) that lead to higher visibility of content with a partisan bent towards the right. Our findings provide evidence that right-leaning sources gain more visibility on social media and reveal that ideological asymmetries manifest themselves even in the context of movements with progressive goals. 
    more » « less
  5. Many online news outlets, forums, and blogs provide a rich stream of publications and user comments. This rich body of data is a valuable source of information for researchers, journalists, and policymakers. However, the ever-increasing production and user engagement rate make it difficult to analyze this data without automated tools. This work presents MultiLayerET, a method to unify the representation of entities and topics in articles and comments. In MultiLayerET, articles' content and associated comments are parsed into a multilayer graph consisting of heterogeneous nodes representing named entities and news topics. The nodes within this graph have attributed edges denoting weight, i.e., the strength of the connection between the two nodes, time, i.e., the co-occurrence contemporaneity of two nodes, and sentiment, i.e., the opinion (in aggregate) of an entity toward a topic. Such information helps in analyzing articles and their comments. We infer the edges connecting two nodes using information mined from the textual data. The multilayer representation gives an advantage over a single-layer representation since it integrates articles and comments via shared topics and entities, providing richer signal points about emerging events. MultiLayerET can be applied to different downstream tasks, such as detecting media bias and misinformation. To explore the efficacy of the proposed method, we apply MultiLayerET to a body of data gathered from six representative online news outlets. We show that with MultiLayerET, the classification F1 score of a media bias prediction model improves by 36%, and that of a state-of-the-art fake news detection model improves by 4%. 
    more » « less