Abstract Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to theforce bunchingeffect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation.
more »
« less
Inclusion of Nonresonant Effects Into Quasi‐Linear Diffusion Rates for Electron Scattering by Electromagnetic Ion Cyclotron Waves
Abstract Electromagnetic ion cyclotron (EMIC) waves are a key plasma mode affecting radiation belt dynamics. These waves are important for relativistic electron losses through scattering and precipitation into Earth's ionosphere. Although theoretical models of such resonant scattering predict a low‐energy cut‐off of ∼1 MeV for precipitating electrons, observations from low‐altitude spacecraft often show simultaneous relativistic and sub‐relativistic electron precipitation associated with EMIC waves. Recently, nonresonant electron scattering by EMIC waves has been proposed as a possible solution to the above discrepancy. We employ this model and a large database of EMIC waves to develop a universal treatment of electron interactions with EMIC waves, including nonresonant effects. We use the Green's function approach to generalize EMIC diffusion rates foregoing the need to modify existing codes or recompute empirical wave databases. Comparison with observations from the electron losses and fields investigation mission demonstrates the efficacy of the proposed method for explaining sub‐relativistic electron losses by EMIC waves.
more »
« less
- PAR ID:
- 10518888
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Geophysical Research Letters
- Volume:
- 51
- Issue:
- 13
- ISSN:
- 0094-8276
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The two most important wave modes responsible for energetic electron scattering to the Earth's ionosphere are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves. These wave modes operate in different energy ranges: whistler‐mode waves are mostly effective in scattering sub‐relativistic electrons, whereas EMIC waves predominately scatter relativistic electrons. In this study, we report the direct observations of energetic electron (from 50 keV to 2.5 MeV) scattering driven by the combined effect of whistler‐mode and EMIC waves using ELFIN measurements. We analyze five events showing EMIC‐driven relativistic electron precipitation accompanied by bursts of whistler‐driven precipitation over a wide energy range. These events reveal an enhancement of relativistic electron precipitation by EMIC waves during intervals of whistler‐mode precipitation compared to intervals of EMIC‐only precipitation. We discuss a possible mechanism responsible for such precipitation. We suggest that below the minimum resonance energy (Emin) of EMIC waves, the whistler‐mode wave may both scatter electrons into the loss‐cone and accelerate them to higher energy (1–3 MeV). Electrons accelerated aboveEminresonate with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. This enhances relativistic electron precipitation beyond what EMIC waves alone could achieve. We present theoretical support for this mechanism, along with observational evidence from the ELFIN mission. We discuss methodologies for further observational investigations of this combined whistler‐mode and EMIC precipitation.more » « less
-
Abstract Electromagnetic ion cyclotron (EMIC) waves lead to rapid scattering of relativistic electrons in Earth's radiation belts, due to their large amplitudes relative to other waves that interact with electrons of this energy range. A central feature of electron precipitation driven by EMIC waves is deeply elusive. That is, moderate precipitating fluxes at energies below the minimum resonance energy of EMIC waves occur concurrently with strong precipitating fluxes at resonance energies in low‐altitude spacecraft observations. This paper expands on a previously reported solution to this problem: nonresonant scattering due to wave packets. The quasi‐linear diffusion model is generalized to incorporate nonresonant scattering by a generic wave shape. The diffusion rate decays exponentially away from the resonance, where shorter packets lower decay rates and thus widen the energy range of significant scattering. Using realistic EMIC wave packets fromδfparticle‐in‐cell simulations, test particle simulations are performed to demonstrate that intense, short packets extend the energy of significant scattering well below the minimum resonance energy, consistent with our theoretical prediction. Finally, the calculated precipitating‐to‐trapped flux ratio of relativistic electrons is compared to ELFIN observations, and the wave power spectra is inferred based on the measured flux ratio. We demonstrate that even with a narrow wave spectrum, short EMIC wave packets can provide moderately intense precipitating fluxes well below the minimum resonance energy.more » « less
-
Abstract Resonant interactions between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves provide an effective loss mechanism for this important electron population in the outer radiation belt. The diffusive regime of electron scattering and loss has been well incorporated into radiation belt models within the framework of the quasi‐linear diffusion theory, whereas the nonlinear regime has been mostly studied with test particle simulations. There is also a less investigated, nonresonant regime of electron scattering by EMIC waves. All three regimes should be present, depending on the EMIC waves and ambient plasma properties, but the occurrence rates of these regimes have not been previously quantified. This study provides a statistical investigation of the most important EMIC wave‐packet characteristics for the diffusive, nonlinear, and nonresonant regimes of electron scattering. We utilize 3 years of observations to derive distributions of wave amplitudes, wave‐packet sizes, and rates of frequency variations within individual wave‐packets. We demonstrate that EMIC waves typically propagate as wave‐packets with ∼10 wave periods each, and that ∼3–10% of such wave‐packets can reach the regime of nonlinear resonant interaction with 2–6 MeV electrons. We show that EMIC frequency variations within wave‐packets reach 50–100% of the center frequency, corresponding to a significant high‐frequency tail in their wave power spectrum. We explore the consequences of these wave‐packet characteristics for high and low energy electron precipitation by H‐band EMIC waves and for the relative importance of quasi‐linear and nonlinear regimes of wave‐particle interactions.more » « less
-
Abstract We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$$\Delta L\sim 0.56$$ ) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$$L\sim 5-7$$ at dusk, while a smaller subset exists at$$L\sim 8-12$$ at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$$L$$ -shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$$\sim 1.45$$ MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.more » « less
An official website of the United States government
