skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: A Bayesian Approach to High-Order Link Prediction
Using a subset of observed network links, high-order link prediction (HOLP) infers missing hyperedges, that is links connecting three or more nodes. HOLP emerges in several applications, but existing approaches have not dealt with the associated predictor’s performance. To overcome this limitation, the present contribution develops a Bayesian approach and the relevant predictive distributions that quantify model uncertainty. Gaussian processes model the dependence of each node to the remaining nodes. These nonparametric models yield predictive distributions, which are fused across nodes by means of a pseudo-likelihood based criterion. Performance is quantified by proper measures of dispersion, which are associated with the predictive distributions. Tests on benchmark datasets demonstrate the benefits of the novel approach.  more » « less
Award ID(s):
2212318 2128593 2220292
PAR ID:
10518934
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2379-190X
ISBN:
979-8-3503-4485-1
Page Range / eLocation ID:
13251 to 13255
Format(s):
Medium: X
Location:
Seoul, Korea, Republic of
Sponsoring Org:
National Science Foundation
More Like this
  1. Graph Neural Networks (GNN) offer the powerful approach to node classification in complex networks across many domains including social media, E-commerce, and FinTech. However, recent studies show that GNNs are vulnerable to attacks aimed at adversely impacting their node classification performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the connectivity between existing nodes, a task that requires greater effort on the part of the attacker in real-world applications. In contrast, it is much more expedient on the part of the attacker to inject adversarial nodes, e.g., fake profiles with forged links, into existing graphs so as to reduce the performance of the GNN in classifying existing nodes. Hence, we consider a novel form of node injection poisoning attacks on graph data. We model the key steps of a node injection attack, e.g., establishing links between the injected adversarial nodes and other nodes, choosing the label of an injected node, etc. by a Markov Decision Process. We propose a novel reinforcement learning method for Node Injection Poisoning Attacks (NIPA), to sequentially modify the labels and links of the injected nodes, without changing the connectivity between existing nodes. Specifically, we introduce a hierarchical Q-learning network to manipulate the labels of the adversarial nodes and their links with other nodes in the graph, and design an appropriate reward function to guide the reinforcement learning agent to reduce the node classification performance of GNN. The results of the experiments show that NIPA is consistently more effective than the baseline node injection attack methods for poisoning graph data on three benchmark datasets. 
    more » « less
  2. 4G, 5G, and smart city networks often rely on microwave and millimeter-wave x-haul links. A major challenge associated with these high frequency links is their susceptibility to weather conditions. In particular, precipitation may cause severe signal attenuation, which significantly degrades the network performance. In this paper, we develop a Predictive Network Reconfiguration (PNR) framework that uses historical data to predict the future condition of each link and then prepares the network ahead of time for imminent disturbances. The PNR framework has two components: (i) an Attenuation Prediction (AP) mechanism; and (ii) a Multi-Step Network Reconfiguration (MSNR) algorithm. The AP mechanism employs an encoder-decoder Long Short-Term Memory (LSTM) model to predict the sequence of future attenuation levels of each link. The MSNR algorithm leverages these predictions to dynamically optimize routing and admission control decisions aiming to maximize network utilization, while preserving max-min fairness among the nodes using the network (e.g., base-stations) and preventing transient congestion that may be caused by switching routes. We train, validate, and evaluate the PNR framework using a dataset containing over 2 million measurements collected from a real-world city-scale backhaul network. The results show that the framework: (i) predicts attenuation with high accuracy, with an RMSE of less than 0.4 dB for a prediction horizon of 50 seconds; and (ii) can improve the instantaneous network utilization by more than 200% when compared to reactive network reconfiguration algorithms that cannot leverage information about future disturbances. 
    more » « less
  3. We consider a multicast network in which real-time status updates generated by a source are replicated and sent to multiple interested receiving nodes through independent links. The receiving nodes are divided into two groups: one priority group consists of k nodes that require the reception of every update packet, the other non-priority group consists of all other nodes without the delivery requirement. Using age of information as a freshness metric, we analyze the time-averaged age at both priority and non-priority nodes. For shifted-exponential link delay distributions, the average age at a priority node is lower than that at a non-priority node due to the delivery guarantee. However, this advantage for priority nodes disappears if the link delay is exponential distributed. Both groups of nodes have the same time-averaged age, which implies that the guaranteed delivery of updates has no effect the time-averaged freshness. 
    more » « less
  4. To achieve good performance, modern applications often partition and replicate their state across multiple geographically-distributed nodes. While this approach reduces latency in the common case, it can be challenging for programmers to use correctly, especially in applications that require strong consistency. We show how to achieve strong consistency while avoiding coordination by using predictive treaties, a mechanism that can significantly reduce distributed coordination without losing strong consistency. The central insight behind our approach is that many computations can be expressed in terms of predicates over distributed state that can be partitioned and enforced locally. Predictive treaties improve on previous work by allowing the locally enforced predicates to depend on time. Intuitively, by predicting the evolution of system state, coordination can be significantly reduced compared to static approaches. We implemented predictive treaties in a distributed system that exposes them via an intuitive programming model. We evaluate performance on several benchmarks, including TPC-C, showing that predictive treaties can significantly increase performance by orders of magnitude and can even outperform customized algorithms. 
    more » « less
  5. Approaches for stochastic nonlinear model predictive control (SNMPC) typically make restrictive assumptions about the system dynamics and rely on approximations to characterize the evolution of the underlying uncertainty distributions. For this reason, they are often unable to capture more complex distributions (e.g., non-Gaussian or multi-modal) and cannot provide accurate guarantees of performance. In this letter, we present a sampling-based SNMPC approach that leverages recently derived sample complexity bounds to certify the performance of a feedback policy without making assumptions about the system dynamics or underlying uncertainty distributions. By parallelizing our approach, we are able to demonstrate real-time receding-horizon SNMPC with statistical safety guarantees in simulation and on hardware using a 1/10th scale rally car and a 24-inch wingspan fixed-wing unmanned aerial vehicle (UAV). 
    more » « less