This content will become publicly available on March 1, 2025
- Award ID(s):
- 1848162
- NSF-PAR ID:
- 10518992
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Nuclear Physics A
- Volume:
- 1043
- Issue:
- C
- ISSN:
- 0375-9474
- Page Range / eLocation ID:
- 122821
- Subject(s) / Keyword(s):
- sPHENIX
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)A bstract Using Soft-Collinear Effective Theory, we develop the transverse-momentum-dependent factorization formalism for heavy flavor dijet production in polarized-proton-electron collisions. We consider heavy flavor mass corrections in the collinear-soft and jet functions, as well as the associated evolution equations. Using this formalism, we generate a prediction for the gluon Sivers asymmetry for charm and bottom dijet production at the future Electron-Ion Collider. Furthermore, we compare theoretical predictions with and without the inclusion of finite quark masses. We find that the heavy flavor mass effects can give sizable corrections to the predicted asymmetry.more » « less
-
Heavy-flavor hadron production, in particular bottom hadron production, is difficult to study in deep-inelastic scattering (DIS) experiments due to small production rates and branching fractions. To overcome these limitations, a method for identifying heavy-flavor DIS events based on event topology is proposed. Based on a heavy-flavor jet tagging strategy developed for the LHCb experiment, this algorithm uses displaced vertices to identify decays of heavy-flavor hadrons. The algorithm’s performance at the Electron-Ion Collider is demonstrated using simulation, and it is shown to provide discovery potential for nonperturbative intrinsic bottom quarks in the proton.
Published by the American Physical Society 2024 -
null (Ed.)Abstract Lepton scattering is an established ideal tool for studying inner structure of small particles such as nucleons as well as nuclei. As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed. It will be constructed based on an upgraded heavy-ion accelerator, High Intensity heavy-ion Accelerator Facility (HIAF) which is currently under construction, together with a new electron ring. The proposed collider will provide highly polarized electrons (with a polarization of ∼80%) and protons (with a polarization of ∼70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of (2–3) × 10 33 cm −2 · s −1 . Polarized deuterons and Helium-3, as well as unpolarized ion beams from Carbon to Uranium, will be also available at the EicC. The main foci of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents. In addition, issues fundamental to understanding the origin of mass could be addressed by measurements of heavy quarkonia near-threshold production at the EicC. In order to achieve the above-mentioned physics goals, a hermetical detector system will be constructed with cutting-edge technologies. This document is the result of collective contributions and valuable inputs from experts across the globe. The EicC physics program complements the ongoing scientific programs at the Jefferson Laboratory and the future EIC project in the United States. The success of this project will also advance both nuclear and particle physics as well as accelerator and detector technology in China.more » « less
-
Abstract This paper is a write-up of the ideas that were presented, developed and discussed at the fourth International Workshop on QCD Challenges from pp to AA, which took place in February 2023 in Padua, Italy. The goal of the workshop was to focus on some of the open questions in the field of high-energy heavy-ion physics and to stimulate the formulation of concrete suggestions for making progresses on both the experimental and theoretical sides. The paper gives a brief introduction to each topic and then summarizes the primary results.
-
null (Ed.)Abstract The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.more » « less