skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Bayesian inference analysis of jet quenching using inclusive jet and hadron suppression measurements
The Collaboration reports a new determination of the jet transport parameter q ̂ in the quark-gluon plasma (QGP) using Bayesian inference, incorporating all available inclusive hadron and jet yield suppression data measured in heavy-ion collisions at the BNL Relativistic Heavy Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC). This multi-observable analysis extends the previously published Bayesian inference determination of q ̂ , which was based solely on a selection of inclusive hadron suppression data. is a modular framework incorporating detailed dynamical models of QGP formation and evolution, and jet propagation and interaction in the QGP. Virtuality-dependent partonic energy loss in the QGP is modeled as a thermalized weakly coupled plasma, with parameters determined from Bayesian calibration using soft-sector observables. This Bayesian calibration of q ̂ utilizes active learning, a machine-learning approach, for efficient exploitation of computing resources. The experimental data included in this analysis span a broad range in collision energy and centrality, and in transverse momentum. In order to explore the systematic dependence of the extracted parameter posterior distributions, several different calibrations are reported, based on combined jet and hadron data; on jet or hadron data separately; and on restricted kinematic or centrality ranges of the jet and hadron data. Tension is observed in comparison of these variations, providing new insights into the physics of jet transport in the QGP and its theoretical formulation. Published by the American Physical Society2025  more » « less
Award ID(s):
2004571 2413003 2316012 2210729
PAR ID:
10609432
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Corporate Creator(s):
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review C
Volume:
111
Issue:
5
ISSN:
2469-9985
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study parton energy-momentum exchange with the quark gluon plasma (QGP) within a multistage approach composed of in-medium Dokshitzer-Gribov-Lipatov-Altarelli-Parisi evolution at high virtuality, and (linearized) Boltzmann transport formalism at lower virtuality. This multistage simulation is then calibrated in comparison with high- p T charged hadrons, D mesons, and the inclusive jet nuclear modification factors, using Bayesian model-to-data comparison, to extract the virtuality-dependent transverse momentum broadening transport coefficient q ̂ . To facilitate this undertaking, we develop a quantitative metric for validating the Bayesian workflow, which is used to analyze the sensitivity of various model parameters to individual observables. The usefulness of this new metric in improving Bayesian model emulation is shown to be highly beneficial for future such analyses. Published by the American Physical Society2024 
    more » « less
  2. In this study, we investigate the impact of new Large Hadron Collider (LHC) inclusive jet and dijet measurements on parton distribution functions (PDFs) that describe the proton structure, with a particular focus on the gluon distribution at large momentum fraction, x , and the corresponding partonic luminosities. We assess constraints from these datasets using next-to-next-to-leading-order (NNLO) theoretical predictions, accounting for a range of uncertainties from scale dependence and numerical integration. From the scale choices available for the calculations, our analysis shows that the central predictions for inclusive jet production show a smaller scale dependence than dijet production. We examine the relative constraints on the gluon distribution provided by the inclusive jet and dijet distributions, and also explore the phenomenological implications for inclusive H , t t ¯ , and t t ¯ H production at the LHC at 14 TeV. Published by the American Physical Society2025 
    more » « less
  3. Using the diabatic formalism, which generalizes the adiabatic approximation in the Born-Oppen-heimer formalism, we apply well-known Hamiltonian methods to calculate the effect of open di-meson thresholds that lie well below the mass of elementary c c ¯ q q ¯ , c c ¯ s s ¯ , and c c ¯ q s ¯ tetraquark bound states. We compute the resulting mass shifts for these states, as well as their decay widths to the corresponding meson pairs. Each mass eigenstate, originally produced using a bound-state approximation under the diabatic formalism, consists of an admixture of a compact diquark-antidiquark configuration (an eigenstate of the original dynamical diquark model) with an extended di-meson configuration induced by the nearest threshold. We compare our results with those from our recent work that employs a scattering formalism, and find a great deal of agreement, but also comment upon interesting discrepancies between the two approaches. Published by the American Physical Society2024 
    more » « less
  4. Measurements of the p T -dependent flow vector fluctuations in Pb–Pb collisions at s NN = 5.02 TeV using azimuthal correlations with the ALICE experiment at the Large Hadron Collider are presented. A four-particle correlation approach [ALICE Collaboration, ] is used to quantify the effects of flow angle and magnitude fluctuations separately. This paper extends previous studies to additional centrality intervals and provides measurements of the p T -dependent flow vector fluctuations at s NN = 5.02 TeV with two-particle correlations. Significant p T -dependent fluctuations of the V 2 flow vector in Pb–Pb collisions are found across different centrality ranges, with the largest fluctuations of up to 15 % being present in the 5% most central collisions. In parallel, no evidence of significant p T -dependent fluctuations of V 3 or V 4 is found. Additionally, evidence of flow angle and magnitude fluctuations is observed with more than 5 σ significance in central collisions. These observations in Pb–Pb collisions indicate where the classical picture of hydrodynamic modeling with a common symmetry plane breaks down. This has implications for hard probes at high p T , which might be biased by p T -dependent flow angle fluctuations of at least 23% in central collisions. Given the presented results, existing theoretical models should be reexamined to improve our understanding of initial conditions, quark–gluon plasma properties, and the dynamic evolution of the created system. ©2024 CERN, for the ALICE Collaboration2024CERN 
    more » « less
  5. Measurements of the polarization and spin correlation in top quark pairs ( t t ¯ ) are presented using events with a single electron or muon and jets in the final state. The measurements are based on proton-proton collision data from the LHC at s = 13 TeV collected by the CMS experiment, corresponding to an integrated luminosity of 138 fb 1 . All coefficients of the polarization vectors and the spin correlation matrix are extracted simultaneously by performing a binned likelihood fit to the data. The measurement is performed inclusively and in bins of additional observables, such as the mass of the t t ¯ system and the top quark scattering angle in the t t ¯ rest frame. The measured polarization and spin correlation are in agreement with the standard model. From the measured spin correlation, conclusions on the t t ¯ spin entanglement are drawn by applying the Peres-Horodecki criterion. The standard model predicts entangled spins for t t ¯ states at the production threshold and at high masses of the t t ¯ system. Entanglement is observed for the first time in events at high t t ¯ mass, where a large fraction of the t t ¯ decays are spacelike separated, with an expected and observed significance of above 5 standard deviations. © 2024 CERN, for the CMS Collaboration2024CERN 
    more » « less