ABSTRACT Thermal acclimation is a key process enabling ectotherms to cope with temperature change. To undergo a successful acclimation response, ectotherms require energy and nutritional building blocks obtained from their diet. However, diet is often overlooked as a factor that can alter acclimation responses. Using a temperate omnivorous fish, opaleye (Girella nigricans), as a model system, we tested the hypotheses that (1) diet can impact the magnitude of thermal acclimation responses and (2) traits vary in their sensitivity to both temperature acclimation and diet. We fed opaleye a simple omnivorous diet (ad libitum Artemia sp. and Ulva sp.) or a carnivorous diet (ad libitum Artemia sp.) at two ecologically relevant temperatures (12 and 20°C) and measured a suite of whole-animal (growth, sprint speed, metabolism), organ (cardiac thermal tolerance) and cellular-level traits (oxidative stress, glycolytic capacity). When opaleye were offered two diet options compared with one, they had reduced cardiovascular thermal performance and higher standard metabolic rate under conditions representative of the maximal seasonal temperature the population experiences (20°C). Further, sprint speed and absolute aerobic scope were insensitive to diet and temperature, while growth was highly sensitive to temperature but not diet, and standard metabolic rate and maximum heart rate were sensitive to both diet and temperature. Our results reveal that diet influences thermal performance in trait-specific ways, which could create diet trade-offs for generalist ectotherms living in thermally variable environments. Ectotherms that alter their diet may be able to regulate their performance at different environmental temperatures.
more »
« less
Trade-off between thermal preference and sperm maturation in a montane lizard
Temperature is a key abiotic factor that influences performance of several physiological traits in ectotherms. Organisms regulate their body temperature within a range of temperatures to enhance physiological function. The capacity of ectotherms, such as lizards, to maintain their body temperature within their preferred range influences physiological traits such as speed, various reproductive patterns, and critical fitness components, such as growth rates or survival. Here, we evaluate the influence of temperature on locomotor performance, sperm morphology and viability in a high elevation lizard species (Sceloporus aeneus). Whereas maximal values for sprint speed coincides with field active and preferred body temperature, short-term exposure at the same range of temperatures produces abnormalities in sperm morphology, lower sperm concentration and diminishes sperm motility and viability. In conclusion, we confirmed that although locomotor performance is maximized at preferred temperatures, there is a trade-off with male reproductive attributes, which may cause infertility. As a consequence, prolonged exposure to preferred temperatures could threaten the persistence of the species through reduced fertility. Persistence of the species is favored in environments with access to cooler, thermal microhabitats that enhance reproductive parameters.
more »
« less
- Award ID(s):
- 1950636
- PAR ID:
- 10519271
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Thermal Biology
- Volume:
- 113
- Issue:
- C
- ISSN:
- 0306-4565
- Page Range / eLocation ID:
- 103526
- Subject(s) / Keyword(s):
- Acclimation Ectotherms, Sperm Parameters Locomotor Performance
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Movements of ectotherms are constrained by their body temperature owing to the effects of temperature on muscle physiology. As physical performance often affects the outcome of predator–prey interactions, environmental temperature can influence the ability of ectotherms to capture prey and/or defend themselves against predators. However, previous research on the kinematics of ectotherms suggests that some species may use elastic storage mechanisms when attacking or defending, thereby mitigating the effects of sub-optimal temperature. Rattlesnakes ( Crotalus spp.) are a speciose group of ectothermic viperid snakes that rely on crypsis, rattling and striking to deter predators. We examined the influence of body temperature on the behavior and kinematics of two rattlesnake species ( Crotalus oreganus helleri and Crotalus scutulatus ) when defensively striking towards a threatening stimulus. We recorded defensive strikes at body temperatures ranging from 15–35°C. We found that strike speed and speed of mouth gaping during the strike were positively correlated with temperature. We also found a marginal effect of temperature on the probability of striking, latency to strike and strike outcome. Overall, warmer snakes are more likely to strike, strike faster, open their mouth faster and reach maximum gape earlier than colder snakes. However, the effects of temperature were less than would be expected for purely muscle-driven movements. Our results suggest that, although rattlesnakes are at a greater risk of predation at colder body temperatures, their decrease in strike performance may be mitigated to some extent by employing mechanisms in addition to skeletal muscle contraction (e.g. elastic energy storage) to power strikes.more » « less
-
Abstract The outcomes of predator-prey interactions between endotherms and ectotherms can be heavily influenced by environmental temperature, owing to the difference in how body temperature affects locomotor performance. However, as elastic energy storage mechanisms can allow ectotherms to maintain high levels of performance at cooler body temperatures, detailed analyses of kinematics are necessary to fully understand how changes in temperature might alter endotherm-ectotherm predator-prey interactions. Viperid snakes are widely distributed ectothermic mesopredators that interact with endotherms both as predator and prey. Although there are numerous studies on the kinematics of viper strikes, surprisingly few have analyzed how this rapid movement is affected by temperature. Here we studied the effects of temperature on the predatory strike performance of rattlesnakes (Crotalus spp.), abundant new world vipers, using both field and captive experimental contexts. We found that the effects of temperature on predatory strike performance are limited, with warmer snakes achieving slightly higher maximum strike acceleration, but similar maximum velocity. Our results suggest that, unlike defensive strikes to predators, rattlesnakes may not attempt to maximize strike speed when attacking prey, and thus the outcomes of predatory strikes may not be heavily influenced by changes in temperature.more » « less
-
Caudal autotomy is a striking adaptation used by many lizard species to evade predators. Most studies to date indicate that caudal autotomy impairs lizard locomotor performance. Surprisingly, some species bearing the longest tails show negligible impacts of caudal autotomy on sprint speed. Part of this variation has been attributed to lineage effects. For the first time, we model the effects of caudal autotomy on the locomotor performance of a gymnophthalmid lizard, Micrablepharus atticolus, which has a long and bright blue tail. To improve model accuracy, we incorporated the effects of several covariates. We found that body temperature, pregnancy, mass, collection site, and the length of the regenerated portion of the tail were the most important predictors of locomotor performance. However, sprint speed was unaffected by tail loss. Apparently, the long tail of M. atticolus is more useful when using undulation amidst the leaf litter and not when using quadrupedal locomotion on a flat surface. Our findings highlight the intricate relationships among physiological, morphological, and behavioral traits. We suggest that future studies about the impacts of caudal autotomy among long-tailed lizards should consider the role of different microhabitats/substrates on locomotor performance, using laboratory conditions that closely mimic their natural environments.more » « less
-
null (Ed.)Introduced species pose a threat to biodiversity, and ecological and physiological factors are important in determining whether an introduced species becomes successfully established in a new region. Locomotor performance is one such factor that can influence the abundance and distribution of an introduced species. We investigated the effects of temperature and parasitism by the intestinal nematode Aplectana hamatospicula on the maximum jump distance and endurance in one invasive and two native treefrogs in Florida, USA. We collected frogs from the wild, estimated their parasite loads, and tested their locomotor performance at three temperatures. Contrary to expectations, invasive Cuban treefrogs (Osteopilus septentrionalis), which are adapted to a warmer climate in the Caribbean, outperformed pinewoods treefrogs (Hyla femoralis) and squirrel treefrogs (H. squirella) at each temperature, even when controlling for body size differences. In all three species, maximum jump distance was positively related to temperature, and this relationship was stronger for larger frogs. Parasites influenced both the maximum jump distance and endurance of frogs. In all three species, larger frogs jumped farther maximum distances than smaller frogs, but this relationship was stronger when frogs had lower, rather than higher, parasite loads. Parasitism had little effect on endurance in invasive frogs, but it tended to decrease the endurance of native frogs at high temperatures. Furthermore, at low temperatures, the lengths of consecutive jumps of infected native frogs tended to increase, suggesting that parasites limited the distances of initial jumps. Effects of temperature and parasites on the locomotor performance of frogs could influence their abilities to forage, escape predators, and disperse. The tremendous locomotor performance of O. septentrionalis, which is maintained across temperatures and parasite loads, likely contributes to the invasion success of this species.more » « less
An official website of the United States government

