The southern Appalachians preserve evidence for three Paleozoic orogenies that contributed to construction of the composite southern Appalachian orogen, including the Taconic (480-440 Ma), Neoacadian (380-340 Ma), and Alleghanian (330-280 Ma) events. However, the complexity of thermal-metamorphic overprinting and polydeformation has impeded efforts to examine questions related to tectonic processes such as the crustal escape flow hypothesis in the southern Appalachians. To address this, new monazite and xenotime laser ablation split-stream U-Pb and hornblende 40Ar/39Ar dates have been produced for the Blue Ridge (BR) and Inner Piedmont (IP), and these data are being compiled with all previously available geo-thermochronological and quantitative P-T data to construct P-T-t histories for different parts of the orogen. Monazite U-Pb dates from prograde monazites in the North Carolina BR yield a clear Taconic (464-441 Ma) metamorphic signal for conditions up to granulite facies, which is interpreted to result from development of a Taconic accretion-subduction complex. Following the Taconic arcs collision, this part of the BR was cooled during Neoacadian and Alleghanian uplift and exhumation pulses, as indicated by thermochronologic dates spanning a wide range of closure temperatures (~550-220 °C). In the IP and Sauratown Mountains window, U-Pb dates of mostly prograde monazite growth yield a dominant Neoacadian signal (369-358 Ma), which corroborates previous age estimates for IP Barrovian metamorphism up to sillimanite II grade. In the IP, hornblende 40Ar/39Ar ages of 380-345 Ma generally indicate syn-Neoacadian cooling below ~500 °C. In the IP between the Brevard and Brindle Creek fault zones, Y-rich monazites yield younger dates (~330 Ma) that overlap with hornblende 40Ar/39Ar yield ages (335-324 Ma). Combined, these ages are interpreted to reflect post-Neoacadian reactivation and retrogression of the Brevard fault zone and potential folding(?) of the Brindle Creek fault zones during early Alleghanian deformation. This retrograde deformation persists until at least 297 Ma, as reflected by xenotime dates in the Brevard zone (311-297 Ma). Future work will address how the timing and extent of metamorphism, deformation, and exhumation may vary south of the present study area.
more »
« less
Acadian, Neo-Acadian, and Alleghenian tectonic reactivation of Taconic thrusts in the northern New England Appalachians
We present results of integrated 40Ar/39Ar geochronology and microstructural analyses of samples from Taconic thrust faults of the northern New England Appalachians that provide evidence for reactivation during the Acadian, Neo-Acadian, and Alleghenian orogenies. 40Ar/39Ar ages c. 420 Ma from western frontal thrusts of the Green Mountains and Berkshire Massif have been interpreted previously to reflect partial resetting of Taconic ages during Acadian metamorphism. In Massachusetts and southern Vermont, these W-directed thrusts transport Grenville basement and its cover sequences over Cambrian-to-Ordovician phyllites and graphitic schists. Our recent investigations of these faults, however, yield a suite of c. 420 Ma 40Ar/39Ar ages obtained from syn-tectonic mica in mylonites and footwall schist/phyllite that are interpreted, rather, to reflect a pulse of W-directed thrusting. This interpretation that these ages record the timing of deformation is based, in part, on the preservation of quartz and feldspar dislocation creep microstructures (i.e., lack of evidence for static recrystallization), as well as the regional distribution of these data relative to Acadian metamorphic isograds. These results align with recent findings for the timing of formation of the Green Mountain Anticlinorium in northern Vermont, as well as detrital zircon data that require isolation of the Catskill Basin from the Connecticut Valley-Gaspe Basin (CVGB) at the onset of deposition around that time. Mylonites and samples from the adjacent footwall schists and phyllites also locally record evidence for minor to wholesale resetting c. 355 Ma associated with a younger phase of ductile deformation. Further evidence for partial resetting of 40Ar/39Ar ages c. 250 is associated with hematite-rich seams parallel to the mylonitic foliation and cross-cutting fractures. We explore how these age populations relate to those obtained from, for example, the CVGB and Chester and Athens Domes, and their implications for correlating surface geology with results from seismic imaging of the lithospheric and mantle structure in the northern New England Appalachians.
more »
« less
- Award ID(s):
- 2147463
- PAR ID:
- 10519326
- Publisher / Repository:
- Geological Society of America Abstracts with Programs
- Date Published:
- Format(s):
- Medium: X
- Location:
- Manchester, New Hampshire
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Pine Hill thrust, a western frontal thrust of the Green Mountain massif in southern Vermont, is characterized by reverse faults that place Precambrian basement rocks over mid-Ordovician rocks. Based on cross-cutting relationships, it has been considered a late-stage Taconic thrust. However, recent investigations in the western front of the Sutton Mountains, Green Mountain massif, and Berkshire massif of southern Quebec, Vermont, and Massachusetts, respectively, suggest fault displacement at 420 Ma and younger. Therefore, motion on these faults may instead be associated with the late Salinic or early Acadian orogeny. This study investigates the hypothesis that the Pine Hill thrust records deformational events associated with the late Salinic and/or Acadian orogenies. Preliminary studies from fieldwork and microstructural analysis of slabbed samples from transects across the Pine Hill thrust, where the lower Cambrian Dalton Formation is mapped as thrust over the Upper Ordovician Ira Formation, reveal at least four generations of foliation. The oldest tectonic foliation, S1, is parallel to primary compositional layering (S0) and is associated with isoclinal F1 folds. Moving from the Dalton Formation in the hanging wall towards the fault zone, S1 becomes progressively transposed into S2, marked by metamorphic compositional layering. Closer to the fault, S2 is crenulated, and S3 emerges as the dominant foliation, becoming the only foliation exhibited by the phyllonites in the fault zone. Finally, the youngest foliation, S4, is a localized crenulation cleavage developed in more pelitic material. These preliminary results suggest a complex deformation history, possibly involving multiple phases of post-Taconic motion on the fault during subsequent orogeneses. Further microstructural analysis and geochronology of these deformation fabrics will help establish the timing of deformation and its tectonic significance, helping to correlate surface geology with results from New England Seismic Transect (NEST) imaging of crustal and mantle lithospheric structure in the northern New England Appalachians.more » « less
-
The Taconic thrust belt in New England is the type locality of the Ordovician Taconic orogeny, the result of partial subduction of the rifted Laurentian margin beneath the Gondwanan-derived Moretown terrane (MT) and the Shelburne Falls arc. Evidence for Ordovician deformation and metamorphism is only preserved in rocks of the Laurentian margin; Taconic deformation and metamorphism in the MT and suture zone were overprinted by Devonian Acadian tectonism. New thermochronological data from the Taconic thrust belt indicate that many faults were active during the Silurian and Devonian, well after the Taconic orogeny. Crust under accreted terranes in New England is much thinner (~30 km) than below the Grenville belt along the Laurentian margin (~45 km), and Li et al. (2018) noted a particularly abrupt change in crustal thickness in southwestern New England near the suture between Laurentia and the MT. New seismic evidence indicates that the abrupt offset in Moho depth in CT and MA occurs east of an anisotropic region (~25 km wide and ~15 km thick) that lies between the shallow Moho of the MT and the deep Moho of Laurentia. The Taconic and Acadian orogens are narrower in southern New England than they are to the north, suggesting greater crustal shortening, and high-grade metamorphic rocks exposed in southern New England indicate greater erosion of overlying crust. Hillenbrand et al. (2021) proposed that an Acadian plateau existed in southern New England from 380 to 330 Ma and that plateau collapse after 330 Ma led to the abrupt Moho offset. We suggest that an indenter in southern New England focused the Acadian collision between Laurentia and Avalonia leading to greater crustal shortening and uplift than elsewhere the Appalachians. The east-dipping suture zone and Neoproterozoic normal faults cutting the leading edge of Laurentia were reactivated as west-directed thrust faults. Further, the diffuse fault zone that displaced the MT and the leading edge of the Laurentian margin penetrated the crust and displaced the Moho beneath the MT creating a double Moho near the suture. The anisotropic zone between the double Moho region is likely composed of crustal and mantle rocks bounded by faults. It is unclear how far east rifted Grenville crust extends under the MT; it is possible that the MT is no longer above its original lithospheric mantle.more » « less
-
Many large fault zones record multiple reactivations that can be difficult to resolve and interpret in the field. Here, we use examples from Vermont and New Zealand to illustrate how structural data combined with 40Ar/39Ar geochronology can be used to reconstruct fault reactivation histories and interpret their possible origins. In SW New Zealand, the Spey-Mica Burn fault zone parallels a transpressive boundary between the Pacific and Australian plates. Integrated structural and 40Ar/39Ar data obtained from pseudotachylyte, mylonite, and other fault rocks allow us to distinguish successive phases of faulting (i.e., reactivations) from cases where different styles of brittle and ductile deformation occurred simultaneously (or nearly so) in the fault zone. Apparent age spectra from multiple minerals show age gradients that reveal four reactivations spanning ~20 Ma. The style and timing of these events correlate well to times of increased convergence rate and collisions between oceanic ridge segments and a nearby trench. Fault zones in NW Vermont also record different styles of reactivation. The Hinesburg Thrust (HT), which juxtaposes Late Proterozoic-Early Cambrian rift clastic rocks against Ordovician carbonate rocks of the Champlain Valley belt, includes a ~30 m thick zone of mylonite that is cut by a cataclastic fault and deformed by folds. 40Ar/39Ar data suggest the mylonite formed during the Ordovician Taconic orogeny and later was folded into a series of domes and basins during the Late Silurian-Devonian Acadian orogeny. Farther west, the Champlain thrust fault (CT) juxtaposes Cambrian dolostones against Ordovician calcareous shales. Superposed faults within the foot wall of the CT show a progressive change in movement direction from W-directed thrusting, to NW-directed thrusting, to N-S slip, and NE-SW slip. These changing slip directions appear to reflect wholly Taconic motion along a north-dipping lateral ramp between Burlington and Shelburne where the CT cuts up section to the south. Acadian reactivation of the CT appears restricted to late folding similar to the HT. These examples highlight the utility of combining structural data with 40Ar/39Ar geochronology to unravel slip histories in continental fault zones and to distinguish among the different styles and origins of fault reactivation.more » « less
-
In the last two decades, crustal channel and escape flow, wherein long-wavelength ductile flow of lower crustal material transports mass and heat out of the collision zone, have remained among the most impactful ideas proposed to explain shortening accommodation in continental collisions. In the Inner Piedmont (IP), southern Appalachians, channel and escape flow have been previously proposed for the Devonian-Mississippian Neoacadian orogeny, and the deep exhumational level of the IP relative to other orogens in which channel flow has been proposed makes it ideal for testing the channel and escape flow models. In the IP channel flow model, the Brevard fault zone (BFZ) footwall is interpreted to buttress orogen-normal crustal flow of the hot IP in northwestern North Carolina and drive escape flow to the southwest. However, the polymetamorphic and deformational history of the southern Appalachians has made it difficult to isolate the spatial and temporal extent of thermal and deformational events driving flow of the interpreted channel. To address this, we use in situ laser ablation split stream monazite (Mz) U-Pb geochronology and geochemistry coupled with quantitative P-T data to define the extent and conditions of Paleozoic metamorphic events in the southern Appalachians of North Carolina. In this area, northwest of the BFZ, Mz dates indicate mostly Taconic (~462 Ma) and minor Neoacadian metamorphism (~368 Ma) whereas IP data show Neoacadian metamorphism (~363–330 Ma) with no Taconic ages. IP Mz also records a transition over time from HREE-poor to HREE-rich compositions, indicating Mz growth associated with both garnet growth and breakdown, respectively. This, along with diffuse chemical profiles and resorption textures in garnet, suggests that IP Mz records prograde to retrograde metamorphism. Furthermore, P-T estimates from the eastern Blue Ridge of northwestern NC are 5–9 kbar and 565–730 °C, whereas peak Neoacadian metamorphism in the IP core reached 5–8 kbar and 750–850 °C. We interpret this to indicate that the BFZ footwall acted as both a thermal and rheological boundary in northwestern NC during Neoacadian metamorphism, supporting earlier interpretations. Future work will assess the timing and conditions of metamorphism further south into the Blue Ridge and IP of South Carolina, Georgia, and Alabama.more » « less
An official website of the United States government

