All‐optical and fully reconfigurable transmissive diffractive optical neural network (DONN) architectures emerge as high‐throughput and energy‐efficient machine learning (ML) hardware accelerators in broad applications. However, current device and system implementations have limited performance. In this work, a novel transmissive diffractive device architecture, a digitized phase‐change material (PCM) heterostack, which consists of multiple nonvolatile PCM layers with different thicknesses, is demonstrated. Through this architecture, the advantages of PCM electrical and optical properties can be leveraged and challenges associated with multilevel operations in a single PCM layer can be mitigated. Through proof‐of‐concept experiments, the electrical tuning of one PCM layer is demonstrated in a transmissive spatial light modulation device, and thermal analysis guides the design of multilayer devices and DONN systems to avoid thermal cross talk if individual heterostacks are assembled into an array. Further, a heterostack containing three PCM layers is designed based on experimental results to produce a large‐phase modulation range and uniform coverage, and the ML performance of DONN systems with the designed heterostack is evaluated. The developed device architecture is practically feasible and scalable for future energy‐efficient, fast‐reconfigured, and compact transmissive DONN systems.
more »
« less
Scientific Computing with Diffractive Optical Neural Networks
Diffractive optical neural networks (DONNs) are emerging as high‐throughput and energy‐efficient hardware platforms to perform all‐optical machine learning (ML) in machine vision systems. However, the current demonstrated applications of DONNs are largely image classification tasks, which undermine the prospect of developing and utilizing such hardware for other ML applications. Herein, the deployment of an all‐optical reconfigurable DONNs system for scientific computing is demonstrated numerically and experimentally, including guiding two‐dimensional quantum material synthesis, predicting the properties of two‐dimensional quantum materials and small molecular cancer drugs, predicting the device response of nanopatterned integrated photonic power splitters, and the dynamic stabilization of an inverted pendulum with reinforcement learning. Despite a large variety of input data structures, a universal feature engineering approach is developed to convert categorical input features to images that can be processed in the DONNs system. The results open up new opportunities for employing DONNs systems for a broad range of ML applications.
more »
« less
- PAR ID:
- 10519487
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 5
- Issue:
- 12
- ISSN:
- 2640-4567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Solving partial differential equations (PDEs) is the cornerstone of scientific research and development. Data-driven machine learning (ML) approaches are emerging to accelerate time-consuming and computation-intensive numerical simulations of PDEs. Although optical systems offer high-throughput and energy-efficient ML hardware, their demonstration for solving PDEs is limited. Here, we present an optical neural engine (ONE) architecture combining diffractive optical neural networks for Fourier space processing and optical crossbar structures for real space processing to solve time-dependent and time-independent PDEs in diverse disciplines, including Darcy flow equation, the magnetostatic Poisson’s equation in demagnetization, the Navier-Stokes equation in incompressible fluid, Maxwell’s equations in nanophotonic metasurfaces, and coupled PDEs in a multiphysics system. We numerically and experimentally demonstrate the capability of the ONE architecture, which not only leverages the advantages of high-performance dual-space processing for outperforming traditional PDE solvers and being comparable with state-of-the-art ML models but also can be implemented using optical computing hardware with unique features of low-energy and highly parallel constant-time processing irrespective of model scales and real-time reconfigurability for tackling multiple tasks with the same architecture. The demonstrated architecture offers a versatile and powerful platform for large-scale scientific and engineering computations.more » « less
-
Due to the limitations of current NISQ systems, error mitigation strategies are under development to alleviate the negative effects of error-inducing noise on quantum applications. This work proposes the use of machine learning (ML) as an error mitigation strategy, using ML to identify the accurate solutions to a quantum application in the presence of noise. Methods of encoding the probabilistic solution space of a basis-encoded quantum algorithm are researched to identify the characteristics which represent good ML training inputs. A multilayer perceptron artificial neural network (MLP ANN) was trained on the results of 8-state and 16-state basis-encoded quantum applications both in the presence of noise and in noise-free simulation. It is demonstrated using simulated quantum hardware and probabilistic noise models that a sufficiently trained model may identify accurate solutions to a quantum applications with over 90% precision and 80% recall on select data. The model makes confident predictions even with enough noise that the solutions cannot be determined by direct observation, and when it cannot, it can identify the inconclusive experiments as candidates for other error mitigation techniques.more » « less
-
null (Ed.)Storage systems and their OS components are designed to accommodate a wide variety of applications and dynamic workloads. Storage components inside the OS contain various heuristic algorithms to provide high performance and adaptability for different workloads. These heuristics may be tunable via parameters, and some system calls allow users to optimize their system performance. These parameters are often predetermined based on experiments with limited applications and hardware. Thus, storage systems often run with these predetermined and possibly suboptimal values. Tuning these parameters manually is impractical: one needs an adaptive, intelligent system to handle dynamic and complex workloads. Machine learning (ML) techniques are capable of recognizing patterns, abstracting them, and making predictions on new data. ML can be a key component to optimize and adapt storage systems. In this position paper, we propose KML, an ML framework for storage systems. We implemented a prototype and demonstrated its capabilities on the well-known problem of tuning optimal readahead values. Our results show that KML has a small memory footprint, introduces negligible overhead, and yet enhances throughput by as much as 2.3x.more » « less
-
This paper presents a design approach for the modeling and simulation of ultra-low power (ULP) analog computing machine learning (ML) circuits for seizure detection using EEG signals in wearable health monitoring applications. In this paper, we describe a new analog system modeling and simulation technique to associate power consumption, noise, linearity, and other critical performance parameters of analog circuits with the classification accuracy of a given ML network, which allows to realize a power and performance optimized analog ML hardware implementation based on diverse application-specific needs. We carried out circuit simulations to obtain non-idealities, which are then mathematically modeled for an accurate mapping. We have modeled noise, non-linearity, resolution, and process variations such that the model can accurately obtain the classification accuracy of the analog computing based seizure detection system. Noise has been modeled as an input-referred white noise that can be directly added at the input. Device process and temperature variations were modeled as random fluctuations in circuit parameters such as gain and cut-off frequency. Nonlinearity was mathematically modeled as a power series. The combined system level model was then simulated for classification accuracy assessments. The design approach helps to optimize power and area during the development of tailored analog circuits for ML networks with the ability to potentially trade power and performance goals while still ensuring the required classification accuracy. The simulation technique also enables to determine target specifications for each circuit block in the analog computing hardware. This is achieved by developing the ML hardware model, and investigating the effect of circuit nonidealities on classification accuracy. Simulation of an analog computing EEG seizure detection block shows a classification accuracy of 91%. The proposed modeling approach will significantly reduce design time and complexity of large analog computing systems. Two feature extraction approaches are also compared for an analog computing architecture.more » « less
An official website of the United States government

