In this paper, we propose GraphiDe, a novel DRAM-based processing-in-memory (PIM) accelerator for graph processing. It transforms current DRAM architecture to massively parallel computational units exploiting the high internal bandwidth of the modern memory chips to accelerate various graph processing applications. GraphiDe can be leveraged to greatly reduce energy consumption and latency dealing with underlying adjacency matrix computations by eliminating unnecessary off-chip accesses. The extensive circuit-architecture simulations over three social network data-sets indicate that GraphiDe achieves on average 3.1x energy-efficiency improvement and 4.2x speed-up over the recent DRAM based PIM platform. It achieves ~59x higher energy-efficiency and 83x speed-up over GPU-based acceleration methods.
more »
« less
PARAG: PIM Architecture for Real-Time Acceleration of GCNs
Graph Convolutional Networks (GCNs) have successfully incorporated deep learning to graph structures for social network analysis, bio-informatics, etc. The execution pattern of GCNs is a hybrid of graph processing and neural networks which poses unique and significant challenges for hardware implementation. Graph processing involves a large amount of irregular memory access with little computation whereas processing of neural networks involves a large number of operations with regular memory access. Existing graph processing and neural network accelerators are therefore inefficient for computing GCNs. This paper presents Parag, processing in memory (PIM) architecture for GCN computation. It consists of customized logic with minuscule computing units called Neural Processing Elements (NPEs) interfaced to each bank of the DRAM to support parallel graph processing and neural network computation. It utilizes the massive internal parallelism of DRAM to accelerate the GCN execution with high energy efficiency. Simulation results for inference of GCN over standard datasets show a latency and energy reduction by three orders of magnitude over a CPU implementation. When compared to a state-of-the-art PIM architecture, PARAG achieves on an average 4x reduction in latency and 4.23x reduction in the energy-delay-product (EDP).
more »
« less
- Award ID(s):
- 2008244
- PAR ID:
- 10519563
- Publisher / Repository:
- IEEE
- Date Published:
- ISSN:
- 2640-0316
- ISBN:
- 979-8-3503-8322-5
- Page Range / eLocation ID:
- 11 to 20
- Subject(s) / Keyword(s):
- Graph Convolutional Networks, Memory Bot- tleneck, Processing In-Memory, DRAM
- Format(s):
- Medium: X
- Location:
- Goa, India
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Latest algorithmic development has brought competitive classification accuracy for neural networks despite constraining the network parameters to ternary or binary representations. These findings show significant optimization opportunities to replace computationally-intensive convolution operations (based on multiplication) with more efficient and less complex operations such as addition. In hardware implementation domain, processing-in-memory architecture is becoming a promising solution to alleviate enormous energy-hungry data communication between memory and processing units, bringing considerable improvement for system performance and energy efficiency while running such large networks. In this paper, we review several of our recent works regarding Processing-in-Memory (PIM) accelerator based on Magnetic Random Access Memory computational sub-arrays to accelerate the inference mode of quantized neural networks using digital non-volatile memory rather than using analog crossbar operation. In this way, we investigate the performance of two distinct in-memory addition schemes compared to other digital methods based on processing-in-DRAM/GPU/ASIC design to tackle DNN power and memory wall bottleneck.more » « less
-
This paper presents a Ferroelectric FET (FeFET) based processing-in-memory (PIM) architecture to accelerate inference of deep neural networks (DNNs). We propose a digital in-memory vector-matrix multiplication (VMM) engine design utilizing the FeFET crossbar to enables bit-parallel computation and eliminate analog-to-digital conversion in prior mixed-signal PIM designs. A dedicated hierarchical network-on-chip (H-NoC) is developed for input broadcasting and on-the-fly partial results processing, reducing the data transmission volume and latency. Simulations in 28nm CMOS technology show 115x and 6.3x higher computing efficiency (GOPs/W) over desktop GPU (Nvidia GTX 1080Ti) and ReRAM based design, respectively.more » « less
-
As the size of real-world graphs continues to grow at an exponential rate, performing the Graph Convolutional Network (GCN) inference efficiently is becoming increasingly challenging. Prior works that employ a unified computing engine with a predefined computation order lack the necessary flexibility and scalability to handle diverse input graph datasets. In this paper, we introduce OPT-GCN, a chiplet-based accelerator design that performs GCN inference efficiently while providing flexibility and scalability through an architecture-algorithm co-design. On the architecture side, the proposed design integrates a unified computing engine in each chiplet and an active interposer, both of which are adaptable to efficiently perform the GCN inference and facilitate data communication. On the algorithm side, we propose dynamic scheduling and mapping algorithms to optimize memory access and on-chip computations for diverse GCN applications. Experimental results show that the proposed design provides a memory access reduction by a factor of 11.3×, 3.4×, 1.4× energy savings of 15.2×, 3.7×, 1.6× on average compared to HyGCN, AWB-GCN, and GCNAX, respectively.more » « less
-
Recently, in-DRAM computing is becoming one promising technique to address the notorious ‘memory-wall’ issue for big data processing. In this work, for the first time, we propose a novel ‘Min/Max-in-memory’ algorithm based on iterative XNOR bit-wise comparison, which supports parallel inmemory searching for minimum and maximum of bulk data stored in DRAM as unsigned & signed integers, fixed-point and floating numbers. We then develop a new processing-in-DRAM architecture, called Max-PIM, that supports complete bit-wise Boolean logic and beyond. Differentiating from prior works, Max-PIM is optimized with one-cycle fast XNOR logicin-DRAM operation and in-memory data transpose, which are heavily used and keys to accelerate the proposed Min/Max-in-memory algorithm efficiently. Extensive experiments of utilizing Max-PIM in big data sorting and graph processing applications show that it could speed up ~ 50X and ~ 1000X than GPU and CPU, while only consuming 10% and 1% energy, respectively. Moreover, comparing with recent representative In-DRAM computing platforms, i.e., Ambit [1], DRISA [2], our design could speed up ~ 3X - 10X.more » « less