skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating the performance of WRF in simulating winds and surface meteorology during a Southern California wildfire event
The intensity and frequency of wildfires in California (CA) have increased in recent years, causing significant damage to human health and property. In October 2007, a number of small fire events, collectively referred to as the Witch Creek Fire or Witch Fire started in Southern CA and intensified under strong Santa Ana winds. As a test of current mesoscale modeling capabilities, we use the Weather Research and Forecasting (WRF) model to simulate the 2007 wildfire event in terms of meteorological conditions. The main objectives of the present study are to investigate the impact of horizontal grid resolution and planetary boundary layer (PBL) scheme on the model simulation of meteorological conditions associated with a Mega fire. We evaluate the predictive capability of the WRF model to simulate key meteorological and fire-weather forecast parameters such as wind, moisture, and temperature. Results of this study suggest that more accurate predictions of temperature and wind speed relevant for better prediction of wildfire spread can be achieved by downscaling regional numerical weather prediction products to 1 km resolution. Furthermore, accurate prediction of near-surface conditions depends on the choice of the planetary boundary layer parameterization. The MYNN parameterization yields more accurate prediction as compared to the YSU parameterization. WRF simulations at 1 km resolution result in better predictions of temperature and wind speed than relative humidity during the 2007 Witch Fire. In summary, the MYNN PBL parameterization scheme with finer grid resolution simulations improves the prediction of near-surface meteorological conditions during a wildfire event.  more » « less
Award ID(s):
2318718 2335847 2209695 2146520 2114740
PAR ID:
10519573
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Earth Science
Volume:
11
ISSN:
2296-6463
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extreme weather events such as hurricanes and heatwaves could cause significant damage to the economy and urban resiliency. Accurate meteorological forecasts of these extreme events could mitigate some aspects of their damage by providing precautionary alerts. The weather forecasts heavily rely on the parameterization of the planetary boundary layer (PBL), which is the lowest layer of the atmosphere that extends up to ~1 km above the surface. In hurricanes, the rotational nature of flows can suppress turbulence; however, such effects are neglected in the conventional PBL schemes, leading to over-diffusive simulations and inaccurate hurricane intensity, size, and track forecasts. In urban areas, complex surface heterogeneities and the Urban Heat Island (UHI) effects are inadequately represented by current PBL models, causing inaccurate forecasts of atmospheric stability, aerosol transport, and wind speeds. To address these issues, the dissertation characterizes the impacts of PBL parameterizations on three problems: hurricane forecasts, air quality forecasts in cities, and wind forecasts in heterogeneous urban areas. To this end, dissertation systematically explored modifications to the existing PBL schemes, urban models, and roughness parameterizations within the Weather Research and Forecasting (WRF) model. More than 500 WRF simulations encompassing major hurricane cases and multiple U.S. cities were performed by varying grid resolutions, eddy diffusivity, UHI magnitudes, and surface roughness configurations. By reducing the vertical diffusion in hurricane simulations, hurricane intensity forecasts improved by ~38% compared to the default PBL schemes in five cases, demonstrating the deficiency of existing parameterizations for rotating cyclonic flows. Our urban simulations also showed that incorporating proper UHI representations in Houston and Dallas led to ~50% and ~12% enhancements in particulate matter and ozone forecasts, respectively, as more realistic nighttime warming prevented excessive aerosol accumulation. Additionally, a novel City-wide Enhanced Directional-Adjusted Roughness (CEDAR) parameterization was introduced that improved surface wind forecasts by ~54% and enhanced the prediction of vertical profiles of winds by ~12%, demonstrating the significance of accounting for upwind surface heterogeneities. The dissertation results collectively highlight that improving PBL processes in weather/climate models can considerably reduce forecasting errors in regular and extreme weather events. Our findings guide the future development of advanced PBL schemes that account for rotation, UHI effects, and surface roughness, thereby improving weather and air quality predictions across diverse environments. The results will be helpful to enhance operational forecasting models, which ultimately could mitigate public health risks, and optimize urban design and hurricane preparedness strategies. 
    more » « less
  2. null (Ed.)
    Abstract The multilayer urban canopy models (UCMs) building effect parameterization (BEP) and BEP + building energy model (BEM; a building energy model integrated in BEP) are added to the Yonsei University (YSU) planetary boundary layer (PBL) parameterization in the Weather Research and Forecasting (WRF) Model. The additions allow for the first analysis of the detailed effects of buildings on the urban boundary layer in a nonlocal closure scheme. The modified YSU PBL parameterization is compared with the other 1.5-order local PBL parameterizations that predict turbulent kinetic energy (TKE), Mellor–Yamada–Janjić and Bougeault–Lacarerre, using both ideal and real cases. The ideal-case evaluation confirms that BEP and BEP+BEM produce the expected results in the YSU PBL parameterization because the simulations are qualitatively similar to the TKE-based PBL parameterizations in which the multilayer UCMs have long existed. The modified YSU PBL parameterization is further evaluated for a real case. Similar to the ideal case, there are larger differences among the different UCMs (simple bulk scheme, BEP, and BEP+BEM) than across the PBL parameterizations when the UCM is held fixed. Based on evaluation against urban near-surface wind and temperature observations for this case, the BEP and BEP+BEM simulations are superior to the simple bulk scheme for each PBL parameterization. 
    more » « less
  3. Background Accurate simulation of wildfires can benefit pre-ignition mitigation and preparedness, and post-ignition emergency response management. Aims We evaluated the performance of Weather Research and Forecast-Fire (WRF-Fire), a coupled fire-atmosphere wildland fire simulation platform, in simulating a large historic fire (2018 Camp Fire). Methods A baseline model based on a setup typically used for WRF-Fire operational applications is utilised to simulate Camp Fire. Simulation results are compared to high-temporal-resolution fire perimeters derived from NEXRAD observations. The sensitivity of the model to a series of modelling parameters and assumptions governing the simulated wind field are then investigated. Results of WRF-Fire for Camp Fire are compared to FARSITE. Key results Baseline case shows non-negligible discrepancies between the simulated fire and the observations on rate of spread (ROS) and spread direction. Sensitivity analysis results show that refining the atmospheric grid of Camp Fire’s complex terrain improves fire prediction capabilities. Conclusions Sensitivity studies show the importance of refined atmosphere modelling for wildland fire simulation using WRF-Fire in complex terrains. Compared to FARSITE, WRF-Fire agrees better with the observations in terms of fire propagation rate and direction. Implications The findings suggest the need for further investigation of other possible sources of wildfire modelling uncertainties and errors. 
    more » « less
  4. null (Ed.)
    This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades. 
    more » « less
  5. Numerical experiments using the WRF model were conducted to analyze the sensitivity of Typhoon Mangkhut intensification simulations to seven widely used planetary boundary layer (PBL) parameterization schemes, including YSU, MYJ, QNSE, MYNN2, MYNN3, ACM2, and BouLac. The results showed that all simulations generally reproduced the tropical cyclone (TC) track and intensity, with YSU, QNSE, and BouLac schemes better capturing intensification processes and closely matching observed TC intensity. In terms of surface layer parameterization, the QNSE scheme produced the highest Ck/Cd ratio, resulting in stronger TC intensity based on Emanuel’s potential intensity theory. In terms of PBL parameterization, the YSU and BouLac schemes, with the same revised MM5 surface layer scheme, simulated weaker turbulent diffusivity Km and shallower mixing height, leading to stronger TC intensity. During the intensification period, the BouLac, YSU, and QNSE PBL schemes exhibited stronger tangential wind, radial inflow within the boundary layer, and updraft around the eye wall, consistent with TC intensity results. Both PBL and surface layer parameterization significantly influenced simulated TC intensity. The QNSE scheme, with the largest Ck/Cd ratio, and the YSU and BouLac schemes, with weaker turbulent diffusivity, generated stronger radial inflow, updraft, and warm core structures, contributing to higher storm intensity. 
    more » « less