- Award ID(s):
- 2319621
- PAR ID:
- 10519656
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Communications Physics
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2399-3650
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Constructing continuous multi-behavioral planar systems through motivation dynamics and bifurcationsThis paper offers new analytical conditions on the system parameters of a particular class of planar dynamical systems which would allow them to undergo a Hopf bifurcation. These systems are constructed as a means of generating multiple behaviors from the same single continuous dynamical system model, without resorting to switching between distinct component continuous dynamics associated to each behavioral mode. This work builds on recent advances which introduced motivation dynamics as an efficient way to design multi-behavioral systems. The contribution of this paper is that it expands the scope of the motivation dynamics approach, and offers explicit analytic conditions on the system parameters to guarantee the existence of bifurcations, which can then be utilized to better engineer the structure and location of the resulting equilibria. Numerical simulations confirm the theoretical predictions for the onset of the Hopf bifurcations.more » « less
-
Urban traffic status (e.g., traffic speed and volume) is highly dynamic in nature, namely, varying across space and evolving over time. Thus, predicting such traffic dynamics is of great importance to urban development and transportation management. However, it is very challenging to solve this problem due to spatial-temporal dependencies and traffic uncertainties. In this article, we solve the traffic dynamics prediction problem from Bayesian meta-learning perspective and propose a novel continuous spatial-temporal meta-learner (cST-ML), which is trained on a distribution of traffic prediction tasks segmented by historical traffic data with the goal of learning a strategy that can be quickly adapted to related but unseen traffic prediction tasks. cST-ML tackles the traffic dynamics prediction challenges by advancing the Bayesian black-box meta-learning framework through the following new points: (1) cST-ML captures the dynamics of traffic prediction tasks using variational inference, and to better capture the temporal uncertainties within tasks, cST-ML performs as a rolling window within each task; (2) cST-ML has novel designs in architecture, where CNN and LSTM are embedded to capture the spatial-temporal dependencies between traffic status and traffic-related features; (3) novel training and testing algorithms for cST-ML are designed. We also conduct experiments on two real-world traffic datasets (taxi inflow and traffic speed) to evaluate our proposed cST-ML. The experimental results verify that cST-ML can significantly improve the urban traffic prediction performance and outperform all baseline models especially when obvious traffic dynamics and temporal uncertainties are presented.more » « less
-
Rathje, E. ; Montoya, B. ; Wayne, M. (Ed.)The rise of data capture and storage capabilities have led to greater data granularity and sharing of data sets in geotechnical earthquake engineering. This broader shift to big data requires ways to process and extract value from it and is aided by the progress in methodologies from the computer science domain and advancements in computer hardware capabilities. General machine learning (ML) models typically receive a set of input parameters and run them through an algorithm to gain outputs with no constraints on the parameters or algorithm process. Three topic areas of ML applications in geotechnical earthquake engineering are reviewed and summarized in this paper: seismic response, liquefaction triggering analysis, and performance-based assessments (lateral displacements and settlement analysis). The current progress of ML is summarized, while the challenges and potential in adopting such approaches are addressed.more » « less
-
Abstract Interacting particle systems play a key role in science and engineering. Access to the governing particle interaction law is fundamental for a complete understanding of such systems. However, the inherent system complexity keeps the particle interaction hidden in many cases. Machine learning methods have the potential to learn the behavior of interacting particle systems by combining experiments with data analysis methods. However, most existing algorithms focus on learning the kinetics at the particle level. Learning pairwise interaction, e.g., pairwise force or pairwise potential energy, remains an open challenge. Here, we propose an algorithm that adapts the Graph Networks framework, which contains an edge part to learn the pairwise interaction and a node part to model the dynamics at particle level. Different from existing approaches that use neural networks in both parts, we design a deterministic operator in the node part that allows to precisely infer the pairwise interactions that are consistent with underlying physical laws by only being trained to predict the particle acceleration. We test the proposed methodology on multiple datasets and demonstrate that it achieves superior performance in inferring correctly the pairwise interactions while also being consistent with the underlying physics on all the datasets. While the previously proposed approaches are able to be applied as simulators, they fail to infer physically consistent particle interactions that satisfy Newton’s laws. Moreover, the proposed physics-induced graph network for particle interaction also outperforms the other baseline models in terms of generalization ability to larger systems and robustness to significant levels of noise. The developed methodology can support a better understanding and discovery of the underlying particle interaction laws, and hence, guide the design of materials with targeted properties.
-
Kinematic motion analysis is widely used in health-care, sports medicine, robotics, biomechanics, sports science, etc. Motion capture systems are essential for motion analysis. There are three types of motion capture systems: marker-based capture, vision-based capture, and volumetric capture. Marker-based motion capture systems can achieve fairly accurate results but attaching markers to a body is inconvenient and time-consuming. Vision-based, marker-less motion capture systems are more desirable because of their non-intrusiveness and flexibility. Volumetric capture is a newer and more advanced marker-less motion capture system that can reconstruct realistic, full-body, animated 3D character models. But volumetric capture has rarely been used for motion analysis because volumetric motion data presents new challenges. We propose a new method for conducting kinematic motion analysis using volumetric capture data. This method consists of a three-stage pipeline. First, the motion is captured by a volumetric capture system. Then the volumetric capture data is processed using the Iterative Closest Points (ICP) algorithm to generate virtual markers that track the motion. Third, the motion tracking data is imported into the biomechanical analysis tool OpenSim for kinematic motion analysis. Our motion analysis method enables users to apply numerical motion analysis to the skeleton model in OpenSim while also studying the full-body, animated 3D model from different angles. It has the potential to provide more detailed and in-depth motion analysis for areas such as healthcare, sports science, and biomechanics.more » « less