Abstract Noble‐metal nanoboxes offer an attractive form of nanomaterials for catalytic applications owing to their open structure and highly efficient use of atoms. Herein, we report the facile synthesis of Ag−Ru core−shell nanocubes and then Ru nanoboxes with a hexagonal close‐packed(hcp) structure, as well as evaluation of their catalytic activity toward a model hydrogenation reaction. By adding a solution of Ru(acac)3in ethylene glycol (EG) dropwise to a suspension of silver nanocubes in EG at 170 °C, Ru atoms are generated and deposited onto the entire surface of a nanocube. As the volume of the RuIIIprecursor is increased, Ru atoms are also produced through a galvanic replacement reaction, generating Ag−Ru nanocubes with a hollow interior. The released Ag+ions are then reduced by EG and deposited back onto the nanocubes. By selectively etching away the remaining Ag with aqueous HNO3, the as‐obtained Ag−Ru nanocubes are transformed into Ru nanoboxes, whose walls are characterized by anhcpstructure and an ultrathin thickness of a few nanometers. Finally, we evaluated the catalytic properties of the Ru nanoboxes with two different wall thicknesses by using a model hydrogenation reaction; both samples showed excellent performance.
more »
« less
Robust, Reproducible, and Scalable Synthesis of Silver Nanocubes
Abstract It remains a challenge to accomplish colloidal synthesis of noble‐metal nanocrystals marked by high quality, large quantity, and batch‐to‐batch consistency. Here we report a self‐airtight setup for achieving robust, reproducible, and scalable production of Ag nanocubes with uniform and controlled sizes from 18 to 60 nm. Different from the conventional open‐to‐air setup, the self‐airtight system makes it practical to stabilize the reaction condition by minimizing the loss of volatile reagents. The new setup also allows us to easily optimize the amount of O2(from air) trapped in the system, ensuring burst nucleation of single‐crystal seeds, followed by their slow growth into nanocubes. Most significantly, the new setup allows for the production of Ag nanocubes at gram quantities without sacrificing uniformity, corner/edge sharpness, controlled size, and high purity across different batches. The availability of high‐quality Ag nanocubes in such a large quantity is anticipated to substantially boost their use in applications related to plasmonics, catalysis, and biomedicine.
more »
« less
- Award ID(s):
- 2002653
- PAR ID:
- 10519751
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 30
- Issue:
- 41
- ISSN:
- 0947-6539
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Facet‐selective etching and deposition, as determined by the landscape of surface energy, represent two powerful methods for the transformation of noble‐metal nanocrystals into nanostructures with complex shapes or morphologies. This review highlights the use of these two methods, including integration of them, for the fabrication of novel monometallic and bimetallic nanostructures with enhanced properties. We start with an introduction to the role of surface capping in controlling the facet‐selective etching or deposition on the surface of Ag nanocrystals, followed by a case study of how to maneuver etching and deposition at different facets of Pd nanocrystals for the fabrication of nanoframes. We then introduce the use of galvanic replacement to accomplish selective etching and deposition on two different facets in an orthogonal manner, transforming Pd nanocubes into Pd−Pt octapods. By complementing galvanic replacement with a chemical reduction reaction, it is also feasible to control the rates of these two reactions for the conversion of Ag nanocubes into Ag@Ag−Au concave nanocubes and Ag@Au core‐shell nanocubes. These transformation methods not only greatly increase the shape diversity of metal nanocrystals but also offer nanocrystals with enhanced plasmonic and/or catalytic properties.more » « less
-
Abstract We report a robust method for effectively removing the chemisorbed Br−ions, a capping agent, from the surface of Pd nanocubes to maximize their catalytic activity. The Br−ions can be removed by simply heating the sample in water, but the desorption of Br−ions will expose the underneath Pd atoms to the O2from air for the formation of a relatively thick oxide layer. During potential cycling, the oxide layer evolves into detrimental features such as steps and terraces. By introducing a trace amount of hydrazine into the system, the Br−ions can be removed by heating without forming a thick oxide layer. The as‐cleaned nanocubes show greatly enhanced activity toward formic acid oxidation. This cleaning method can also remove Br−ions from Rh nanocubes and it is expected to work for other combinations of nanocrystals and capping agents.more » « less
-
null (Ed.)Silver nanocubes have found use in an array of applications but their performance has been plagued by the shape instability arising from the oxidation and dissolution of Ag atoms from the edges and corners. Here we demonstrate that the shape of Ag nanocubes can be well preserved by covering their edges and corners with a corrosion-resistant metal such as Ir. In a typical process, we titrate a Na 3 IrCl 6 solution in ethylene glycol (EG) into a suspension of Ag nanocubes in an EG solution in the presence of poly(vinylpyrrolidone) (PVP) held at 110 °C. The Ir atoms derived from the reduction of Na 3 IrCl 6 by EG and Ag are deposited onto the edges and then corners for the generation of Ag–Ir core-frame nanocubes. Remarkably, our results indicate that a small amount of Ir atoms on the edges and corners is adequate to prevent the Ag nanocubes from transforming into nanospheres when heated in a PVP/EG solution up to 110 °C. We further demonstrate that these Ag–Ir nanocubes embrace plasmonic properties comparable to those of the original Ag nanocubes, making them immediately useful in a variety of applications. This strategy for stabilizing the shape of Ag nanocubes should be extendible to Ag nanocrystals with other shapes or nanocrystals comprised of other metals.more » « less
-
Abstract The large‐scale growth of semiconducting thin films on insulating substrates enables batch fabrication of atomically thin electronic and optoelectronic devices and circuits without film transfer. Here an efficient method to achieve rapid growth of large‐area monolayer MoSe2films based on spin coating of Mo precursor and assisted by NaCl is reported. Uniform monolayer MoSe2films up to a few inches in size are obtained within a short growth time of 5 min. The as‐grown monolayer MoSe2films are of high quality with large grain size (up to 120 µm). Arrays of field‐effect transistors are fabricated from the MoSe2films through a photolithographic process; the devices exhibit high carrier mobility of ≈27.6 cm2V–1s–1and on/off ratios of ≈105. The findings provide insight into the batch production of uniform thin transition metal dichalcogenide films and promote their large‐scale applications.more » « less
An official website of the United States government
