skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Step-growth polymerization by the RAFT process
RAFT step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone).  more » « less
Award ID(s):
2108670
PAR ID:
10519864
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
53
ISSN:
1359-7345
Page Range / eLocation ID:
8168 to 8189
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. RAFT step-growth polymerizationviathe Z-group approach was developed, offering a facile method to prepare deconstructable (multiblock) polymers by combining RAFT chain-growth polymerization and RAFT interchange. 
    more » « less
  2. Abstract Photomediated reversible addition fragmentation chain transfer (RAFT) step‐growth polymerization is performed using a trithiocarbonate‐based chain transfer agent (CTA) and acrylate‐based monomers both with and without a photocatalyst. The versatility of photo‐mediated RAFT step‐growth is demonstrated by one‐pot synthesis of a graft copolymer via sequential monomer addition. Furthermore, oxygen‐tolerant photo‐mediated RAFT step‐growth is demonstrated, facilitated by the appropriate selection of photocatalyst and solvent pair (zinc tetraphenyl porphyrin [ZnTPP] and dimethyl sulfoxide [DMSO]), enabling ultralow volume polymerization under open‐air conditions. 
    more » « less
  3. Here, we report the modelling of photo-mediated RAFT step-growth polymerization kinetics of maleimide and acrylate monomers with bifunctional RAFT agents bearing tertiary carboxyalkyl stabilized fragementable R groups. 
    more » « less
  4. Here we report the modelling of thermally initiated RAFT step-growth polymerization kinetics of maleimide and acrylate monomers with bifunctional RAFT agents bearing tertiary carboxyalkyl-stabilized fragmentable R groups. 
    more » « less
  5. The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers. 
    more » « less