2,4,6-Triaminopyrimidine is an interesting and challenging molecule due to the presence of multiple hydrogen-bond donors and acceptors. Its noncovalent interactions with a variety of carboxylic acids provide several supramolecular aggregates with frequently occurring molecular synthons. The present work focuses on the supramolecular interactions of 2,4,6-triaminopyrimidinium 3-(indol-3-yl)propionate–3-(indol-3-yl)propionic acid (1/1), C4H8N5+·C11H10NO2−·C11H11NO2, (I), 2,4,6-triaminopyrimidinium 2-(indol-3-yl)acetate, C4H8N5+·C10H8NO2−, (II), 2,4,6-triaminopyrimidinium 5-bromothiophene-2-carboxylate, C4H8N5+·C5H2BrO2S−, (III), and 2,4,6-triaminopyrimidinium 5-chlorothiophene-2-carboxylate, C4H8N5+·C5H2ClO2S−, (IV). All four salts exhibit robust homomeric and heteromericR22(8) ring motifs. Salts (I) and (II) develop sextuple [in (I)] and quadruple [in (I) and (II)] hydrogen-bonded arrays through fused-ring motifs. Salt (II) exhibits a rosette-like architecture. Salt (IV) is isostructural and isomorphous with salt (III), exhibiting an identical crystal structure with a different composition and an identical supramolecular architecture. In salts (III) and (IV), a linear hetero-tetrameric motif is formed and, in addition, both salts exhibit halogen–π interactions which enhance the crystal stability. All four salts develop a supramolecular hydrogen-bonded pattern facilitated by several N—H...O and N—H...N hydrogen bonds with multiple furcated donors and acceptors.
more »
« less
Crystal structure of a (carboxymethyl)triethylazanium bromide–2-(triethylazaniumyl)acetate (1/1) hydrogen-bonded dimer
The title compound, C8H18NO2+·Br−·C8H17NO2, crystallizes as the bromide salt of a 50:50 mixture of (triethylazaniumyl)carboxylic acid and the zwitterionic (triethylazaniumyl)carboxylate. The two organic entities are linked by a half-occupied bridging carboxylic acid hydrogen atom that is hydrogen-bonded to the carboxylate group of the second molecule. The tetralkylammonium group adopts a nearly perfect tetrahedral shape around the nitrogen atom with bond lengths that agree with known values. The carboxylic acid/carboxylate group is orientedantito one of the ethyl groups on the ammonium group, and the carbonyl oxygen atom is engaged in intramolecular C—H...O hydrogen bonds.
more »
« less
- PAR ID:
- 10519941
- Publisher / Repository:
- International Union of Crystallography
- Date Published:
- Journal Name:
- Acta Crystallographica Section E Crystallographic Communications
- Volume:
- 79
- Issue:
- 9
- ISSN:
- 2056-9890
- Page Range / eLocation ID:
- 800 to 803
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The 1:1 cocrystal of 5-fluorocytosine (5FC) and 4-hydroxybenzaldehyde (4HB), C4H4FN3O·C7H6O2has been synthesized and its structure characterized by single-crystal X-ray diffraction and Hirshfeld surface analysis. The compound crystallizes in the monoclinicP21/cspace group. A robust supramolecular architecture is stabilized by N—H...O, N—H...N, C—H...O and C—H...F hydrogen bonds, formingR22(8),R44(22),R66(32), andR88(34) ring motifs. The N—H...O and N—H...N hydrogen bonds form strong directional interactions, contributing to theR22(8) andR88(34) motifs through dimeric and extended ring structures. O—H...O interactions link 5FC and 4HB molecules, generating anR66(32) ring that enhances the packing. Weaker C—H...F bonds help form theR44(22) tetrameric motif, supporting the overall three-dimensional supramolecular framework. Additionally, C—F...π interactions between the fluorine atom and the aromatic ring add further to the crystal cohesion. Hirshfeld surface analysis and two-dimensional fingerprint plots confirm that O...H/H...O contacts are the most significant, highlighting the central role of hydrogen bonding in the stability and organization of the crystal structure.more » « less
-
In the title compound, C10H8N2·2C6H5NO3, 4-nitrophenol and 4,4′-bipyridine crystallized together in a 2:1 ratio in the space groupP21/n. There is a hydrogen-bonding interaction between the nitrogen atoms on the 4,4′-bipyridine molecule and the hydrogen atom on the hydroxyl group on the 4-nitrophenol, resulting in trimolecular units. This structure is a polymorph of a previously reported structure [Nayak & Pedireddi (2016).Cryst. Growth Des.16, 5966–5975], which differs mainly due to a twist in the 4,4′-bipyridine molecule.more » « less
-
The structure of zymonic acid (systematic name: 4-hydroxy-2-methyl-5-oxo-2,5-dihydrofuran-2-carboxylic acid), C 6 H 6 O 5 , which had previously eluded crystallographic determination, is presented here for the first time. It forms by intramolecular condensation of parapyruvic acid, which is the product of aldol condensation of pyruvic acid. A redetermination of the crystal structure of pyruvic acid (systematic name: 2-oxopropanoic acid), C 3 H 4 O 3 , at low temperature (90 K) and with increased precision, is also presented [for the previous structure, see: Harata et al. (1977). Acta Cryst. B 33 , 210–212]. In zymonic acid, the hydroxylactone ring is close to planar (r.m.s. deviation = 0.0108 Å) and the dihedral angle between the ring and the plane formed by the bonds of the methyl and carboxylic acid carbon atoms to the ring is 88.68 (7)°. The torsion angle of the carboxylic acid group relative to the ring is 12.04 (16)°. The pyruvic acid molecule is almost planar, having a dihedral angle between the carboxylic acid and methyl-ketone groups of 3.95 (6)°. Intermolecular interactions in both crystal structures are dominated by hydrogen bonding. The common R 2 2 (8) hydrogen-bonding motif links carboxylic acid groups on adjacent molecules in both structures. In zymonic acid, this results in dimers about a crystallographic twofold of space group C 2/ c , which forces the carboxylic acid group to be disordered exactly 50:50, which scrambles the carbonyl and hydroxyl groups and gives an apparent equalization of the C—O bond lengths [1.2568 (16) and 1.2602 (16) Å]. The other hydrogen bonds in zymonic acid (O—H...O and weak C—H...O), link molecules across a 2 1 -screw axis, and generate an R 2 2 (9) motif. These hydrogen-bonding interactions propagate to form extended pleated sheets in the ab plane. Stacking of these zigzag sheets along c involves only van der Waals contacts. In pyruvic acid, inversion-related molecules are linked into R 2 2 (8) dimers, with van der Waals interactions between dimers as the only other intermolecular contacts.more » « less
-
Crystals of the title salt, (C8H20N)[Sn(C6H5)3(C2H2O2S)], comprise diisobutylammonium cations and mercaptoacetatotriphenylstannate(IV) anions. The bidentate binding mode of the mercaptoacetate ligand gives rise to a five-coordinated, ionic triphenyltin complex with a distortedcis-trigonal–bipyramidal geometry around the tin atom. In the crystal, charge-assisted ammonium-N—H...O(carboxylate) hydrogen-bonding connects two cations and two anions into a four-ion aggregate. Two positions were resolved for one of the phenyl rings with the major component having a site occupancy factor of 0.60 (3).more » « less
An official website of the United States government

