skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating the Generalizability of Physiological Characteristics of Anxiety
Recent works have demonstrated the effectiveness of machine learning (ML) techniques in detecting anxiety and stress using physiological signals, but it is unclear whether ML models are learning physiological features specific to stress. To address this ambiguity, we evaluated the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions. Specifically, we examine features extracted from electrocardiogram (ECG) and electrodermal (EDA) signals from the following three datasets: Anxiety Phases Dataset (APD), Wearable Stress and Affect Detection (WESAD), and the Continuously Annotated Signals of Emotion (CASE) dataset. We aim to understand whether these features are specific to anxiety or general to other high-arousal emotions through a statistical regression analysis, in addition to a within-corpus, cross-corpus, and leave-one-corpus-out cross-validation across instances of stress and arousal. We used the following classifiers: Support Vector Machines, LightGBM, Random Forest, XGBoost, and an ensemble of the aforementioned models. We found that models trained on an arousal dataset perform relatively well on a previously unseen stress dataset, and vice versa. Our experimental results suggest that the evaluated models may be identifying emotional arousal instead of stress. This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.  more » « less
Award ID(s):
2211550
PAR ID:
10520055
Author(s) / Creator(s):
; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2156-1133
ISBN:
979-8-3503-3748-8
Page Range / eLocation ID:
4848 to 4855
Subject(s) / Keyword(s):
Support vector machines Measurement Emotion recognition Computer aided software engineering Anxiety disorders Electrocardiography Feature extraction
Format(s):
Medium: X
Location:
Istanbul, Turkiye
Sponsoring Org:
National Science Foundation
More Like this
  1. The development of transformer-based models has resulted in significant advances in addressing various vision and NLP-based research challenges. However, the progress made in transformer-based methods has not been effectively applied to biosensor/physiological signal-based emotion recognition research. The reasons are that transformers require large training data, and most of the biosensor datasets are not large enough to train these models. To address this issue, we propose a novel Unified Biosensor–Vision Multimodal Transformer (UBVMT) architecture, which enables self-supervised pretraining by extracting Remote Photoplethysmography (rPPG) signals from videos in the large CMU-MOSEI dataset. UBVMT classifies emotions in the arousal-valence space by combining a 2D representation of ECG/PPG signals with facial information. As opposed to modality-specific architecture, our novel unified architecture of UBVMT consists of homogeneous transformer blocks that take as input the image-based representation of the biosensor signals and the corresponding face information for emotion representation. This minimal modality-specific design reduces the number of parameters in UBVMT by half compared to conventional multimodal transformer networks, enabling its application in our web-based system, where loading large models poses significant memory challenges. UBVMT is pretrained in a self-supervised manner by employing masked autoencoding to reconstruct masked patches of video frames and 2D scalogram images of ECG/PPG signals, and contrastive modeling to align face and ECG/PPG data. Extensive experiments on publicly available datasets show that our UBVMT-based model produces comparable results to state-of-the-art techniques. 
    more » « less
  2. Previous studies have solely focused on establishing Machine Learning (ML) models for automated detection of stress arousal. However, these studies do not recognize stress appraisal and presume stress is a negative mental state. Yet, stress can be classified according to its influence on individuals; the way people perceive a stressor determines whether the stress reaction is considered as eustress (positive stress) or distress (negative stress). Thus, this study aims to assess the potential of using an ML approach to determine stress appraisal and identify eustress and distress instances using physiological and behavioral features. The results indicate that distress leads to higher perceived stress arousal compared to eustress. An XGBoost model that combined physiological and behavioral features using a 30 second time window had 83.38% and 78.79% F 1 -scores for predicting eustress and distress, respectively. Gender-based models resulted in an average increase of 2-4% in eustress and distress prediction accuracy. Finally, a model to predict the simultaneous assessment of eustress and distress, distinguishing between pure eustress, pure distress, eustress-distress coexistence, and the absence of stress achieved a moderate F 1 -score of 65.12%. The results of this study lay the foundation for work management interventions to maximize eustress and minimize distress in the workplace. 
    more » « less
  3. Khan, Iftikhar Ahmed (Ed.)
    Previous studies have primarily focused on predicting stress arousal, encompassing physiological, behavioral, and psychological responses to stressors, while neglecting the examination of stress appraisal. Stress appraisal involves the cognitive evaluation of a situation as stressful or non-stressful, and as a threat/pressure or a challenge/opportunity. In this study, we investigated several research questions related to the association between states of stress appraisal (i.e., boredom, eustress, coexisting eustress-distress, distress) and various factors such as stress levels, mood, productivity, physiological and behavioral responses, as well as the most effective ML algorithms and data signals for predicting stress appraisal. The results support the Yerkes-Dodson law, showing that a moderate stress level is associated with increased productivity and positive mood, while low and high levels of stress are related to decreased productivity and negative mood, with distress overpowering eustress when they coexist. Changes in stress appraisal relative to physiological and behavioral features were examined through the lenses of stress arousal, activity engagement, and performance. An XGBOOST model achieved the best prediction accuracies of stress appraisal, reaching 82.78% when combining physiological and behavioral features and 79.55% using only the physiological dataset. The small accuracy difference of 3% indicates that physiological data alone may be adequate to accurately predict stress appraisal, and the feature importance results identified electrodermal activity, skin temperature, and blood volume pulse as the most useful physiologic features. Implementing these models within work environments can serve as a foundation for designing workplace policies, practices, and stress management strategies that prioritize the promotion of eustress while reducing distress and boredom. Such efforts can foster a supportive work environment to enhance employee well-being and productivity. 
    more » « less
  4. Le, Khanh N.Q. (Ed.)
    In current clinical settings, typically pain is measured by a patient’s self-reported information. This subjective pain assessment results in suboptimal treatment plans, over-prescription of opioids, and drug-seeking behavior among patients. In the present study, we explored automatic objective pain intensity estimation machine learning models using inputs from physiological sensors. This study uses BioVid Heat Pain Dataset. We extracted features from Electrodermal Activity (EDA), Electrocardiogram (ECG), Electromyogram (EMG) signals collected from study participants subjected to heat pain. We built different machine learning models, including Linear Regression, Support Vector Regression (SVR), Neural Networks and Extreme Gradient Boosting for continuous value pain intensity estimation. Then we identified the physiological sensor, feature set and machine learning model that give the best predictive performance. We found that EDA is the most information-rich sensor for continuous pain intensity prediction. A set of only 3 features from EDA signals using SVR model gave an average performance of 0.93 mean absolute error (MAE) and 1.16 root means square error (RMSE) for the subject-independent model and of 0.92 MAE and 1.13 RMSE for subject-dependent. The MAE achieved with signal-feature-model combination is less than 1 unit on 0 to 4 continues pain scale, which is smaller than the MAE achieved by the methods reported in the literature. These results demonstrate that it is possible to estimate pain intensity of a patient using a computationally inexpensive machine learning model with 3 statistical features from EDA signal which can be collected from a wrist biosensor. This method paves a way to developing a wearable pain measurement device. 
    more » « less
  5. Programming can be an emotional experience, particularly for undergraduate students who are new to computer science. While researchers have interviewed novice programmers about their emotional experiences, it can be difficult to pinpoint the specific emotions that occur during a programming session. In this paper, we argue that electrodermal activity (EDA) sensors, which measure the physiological changes that are indicative of an emotional reaction, can provide a valuable new data source to help study student experiences. We conducted a study with 14 undergraduate students in which we collected EDA data while they worked on a programming problem. This data was then used to cue the participants’ recollections of their emotions during a retrospective interview about the programming experience. Using this methodology, we identified 21 distinct events that triggered student emotions, such as feeling anxiety due to a lack of perceived progress on the problem. We also identified common patterns in EDA data across multiple participants, such as a drop in their physiological reaction after developing a plan, corresponding with a calmer emotional state. These findings provide new information about how students experience programming that can inform research and practice, and also contribute initial evidence of the value of EDA data in supporting studies of emotions while programming. 
    more » « less