skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TalkUp: Paving the Way for Understanding Empowering Language
Empowering language is important in many real-world contexts, from education to workplace dynamics to healthcare. Though language technologies are growing more prevalent in these contexts, empowerment has seldom been studied in NLP, and moreover, it is inherently challenging to operationalize because of its implicit nature. This work builds from linguistic and social psychology literature to explore what characterizes empowering language. We then crowdsource a novel dataset of Reddit posts labeled for empowerment, reasons why these posts are empowering to readers, and the social relationships between posters and readers. Our preliminary analyses show that this dataset, which we call TalkUp, can be used to train language models that capture empowering and disempowering language. More broadly, TalkUp provides an avenue to explore implication, presuppositions, and how social context influences the meaning of language.  more » « less
Award ID(s):
2142739 2203097 2125201
PAR ID:
10520147
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Association for Computational Linguistics
Date Published:
Page Range / eLocation ID:
9334 to 9354
Format(s):
Medium: X
Location:
Singapore
Sponsoring Org:
National Science Foundation
More Like this
  1. Interpersonal violence (IPV) is a prominent sociological problem that affects people of all demographic backgrounds. By analyzing how readers interpret, perceive, and react to experiences narrated in social media posts, we explore an understudied source for discourse about abuse. We asked readers to annotate Reddit posts about relationships with vs. without IPV for stakeholder roles and emotion, while measuring their galvanic skin response (GSR), pulse, and facial expression. We map annotations to coreference resolution output to obtain a labeled coreference chain for stakeholders in texts, and apply automated semantic role labeling for analyzing IPV discourse. Findings provide insights into how readers process roles and emotion in narratives. For example, abusers tend to be linked with violent actions and certain affect states. We train classifiers to predict stakeholder categories of coreference chains. We also find that subjects' GSR noticeably changed for IPV texts, suggesting that co-collected measurement-based data about annotators can be used to support text annotation. 
    more » « less
  2. Loader, B. (Ed.)
    When researchers invoke the term ‘last billion’ to refer to emerging ICT users, they often focus on network access as a ‘solution’ while neglecting important considerations such as local ownership or knowledge, both of which are essential to sustainable and empowering uses of these technologies in developing contexts. Research reveals that mere access to networks without active community involvement can fail to empower already marginalized and disenfranchized users. Building upon these findings, this article uses ethnographic methods to explore the meanings of ‘network sovereignty’ in rural, low-income communities in developing countries. It presents two case studies focused on local network initiatives in Oaxaca, Mexico and Bunda, Tanzania and then offers an assessment matrix to support future network sovereignty research based on five categories: community engagement; local cultures/ontologies; digital education and technological knowledge; economic ownership; and community empowerment. Our comparative research reveals that communities that are able to assert collective ownership over local infrastructure, embed network initiatives within local cultures, and prioritize digital education are much more likely to create and sustain local networks that support their economic, political, and cultural lives. 
    more » « less
  3. Social media discourse involves people from different backgrounds, beliefs, and motives. Thus, often such discourse can devolve into toxic interactions. Generative Models, such as Llama and ChatGPT, have recently exploded in popularity due to their capabilities in zero-shot question-answering. Because these models are increasingly being used to ask questions of social significance, a crucial research question is whether they can understand social media dynamics. This work provides a critical analysis regarding generative LLM’s ability to understand language and dynamics in social contexts, particularly considering cyberbullying and anti-cyberbullying (posts aimed at reducing cyberbullying) interactions. Specifically, we compare and contrast the capabilities of different large language models (LLMs) to understand three key aspects of social dynamics: language, directionality, and the occurrence of bullying/anti-bullying messages. We found that while fine-tuned LLMs exhibit promising results in some social media understanding tasks (understanding directionality), they presented mixed results in others (proper paraphrasing and bullying/anti-bullying detection). We also found that fine-tuning and prompt engineering mechanisms can have positive effects in some tasks. We believe that a understanding of LLM’s capabilities is crucial to design future models that can be effectively used in social applications. 
    more » « less
  4. Firms’ public communication on social media during disasters can benefit both disaster response efficiency and the perception of the corporate image. Despite its importance, limited guidelines are available to inform firms’ disaster communication strategies. The current study examines firms’ communication on social media in various disasters and how it impacts public engagement. We employ a novel natural language processing (NLP) approach, Semantic Projection with Active Retrieval (SPAR), to analyze Facebook posts made by Russell 3000 firms between 2009 and 2022 concerning various disasters. We show that firm communication can be measured based on two dimensions derived from the Competing Values Framework (CVF): internal versus external and stable versus flexible. We find that social media messages that emphasize operational continuity (internal/stable-oriented) are more popular during biological disasters. By contrast, messages that stress innovations and adaptations to disasters (external/flexible-oriented) elicit more engagement in weather-related disasters. The study offers a framework to characterize and guide firms’ design of disaster communication on social media in different disaster contexts. Our SPAR method is also available to firms to analyze their social media data and uncover the underlying patterns in communication across different contexts. 
    more » « less
  5. Al-Nofaie, H (Ed.)
    Prior research has demonstrated relationships between personality traits of social media users and the language used in their posts. Few studies have examined whether there are relationships between personality traits of users and how they use emojis in their social media posts. Emojis are digital pictographs used to express ideas and emotions. There are thousands of emojis, which depict faces with expressions, objects, animals, and activities. We conducted a study with two samples (n = 76 andn = 245) in which we examined how emoji use on X (formerly Twitter) related to users’ personality traits and language use in posts. Personality traits were assessed from participants in an online survey. With participants’ consent, we analyzed word usage in posts. Word frequencies were calculated using the Linguistic Inquiry Word Count (LIWC). In both samples, the results showed that those who used the most emojis had the lowest levels of openness to experience. Emoji use was unrelated to the other personality traits. In sample 1, emoji use was also related to use of words related to family, positive emotion, and sadness and less frequent use of articles and words related to insight. In sample 2, more frequent use of emojis in posts was related to more frequent use ofyoupronouns,Ipronouns, and more frequent use of negative function words and words related to time. The results support the view that social media users’ characteristics may be gleaned from the content of their social media posts. 
    more » « less