In this paper, we propose a new algorithm for solving convex-concave saddle-point problems using regret minimization in the repeated game framework. To do so, we introduce the Conic Blackwell Algorithm + ([Formula: see text]), a new parameter- and scale-free regret minimizer for general convex compact sets. [Formula: see text] is based on Blackwell approachability and attains [Formula: see text] regret. We show how to efficiently instantiate [Formula: see text] for many decision sets of interest, including the simplex, [Formula: see text] norm balls, and ellipsoidal confidence regions in the simplex. Based on [Formula: see text], we introduce [Formula: see text], a new parameter-free algorithm for solving convex-concave saddle-point problems achieving a [Formula: see text] ergodic convergence rate. In our simulations, we demonstrate the wide applicability of [Formula: see text] on several standard saddle-point problems from the optimization and operations research literature, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, [Formula: see text] achieves state-of-the-art numerical performance and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters. Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by the National Science Foundation [Grant IIS-2147361].
more »
« less
Reducing Blackwell and Average Optimality to Discounted MDPs via the Blackwell Discount Factor
- Award ID(s):
- 2144601
- PAR ID:
- 10520160
- Publisher / Repository:
- Advances of Neural Information Processing Systems
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study repeated independent Blackwell experiments; standard examples include drawing multiple samples from a population, or performing a measurement in different locations. In the baseline setting of a binary state of nature, we compare experiments in terms of their informativeness in large samples. Addressing a question due to Blackwell (1951), we show that generically an experiment is more informative than another in large samples if and only if it has higher Rényi divergences. We apply our analysis to the problem of measuring the degree of dissimilarity between distributions by means of divergences. A useful property of Rényi divergences is their additivity with respect to product distributions. Our characterization of Blackwell dominance in large samples implies that every additive divergence that satisfies the data processing inequality is an integral of Rényi divergences.more » « less
An official website of the United States government

