Saddle-point problems appear in various settings including machine learning, zero-sum stochastic games, and regression problems. We consider decomposable saddle-point problems and study an extension of the alternating direction method of multipliers to such saddle-point problems. Instead of solving the original saddle-point problem directly, this algorithm solves smaller saddle-point problems by exploiting the decomposable structure. We show the convergence of this algorithm for convex-concave saddle-point problems under a mild assumption. We also provide a sufficient condition for which the assumption holds. We demonstrate the convergence properties of the saddle-point alternating direction method of multipliers with numerical examples on a power allocation problem in communication channels and a network routing problem with adversarial costs.
more »
« less
Solving Optimization Problems with Blackwell Approachability
In this paper, we propose a new algorithm for solving convex-concave saddle-point problems using regret minimization in the repeated game framework. To do so, we introduce the Conic Blackwell Algorithm + ([Formula: see text]), a new parameter- and scale-free regret minimizer for general convex compact sets. [Formula: see text] is based on Blackwell approachability and attains [Formula: see text] regret. We show how to efficiently instantiate [Formula: see text] for many decision sets of interest, including the simplex, [Formula: see text] norm balls, and ellipsoidal confidence regions in the simplex. Based on [Formula: see text], we introduce [Formula: see text], a new parameter-free algorithm for solving convex-concave saddle-point problems achieving a [Formula: see text] ergodic convergence rate. In our simulations, we demonstrate the wide applicability of [Formula: see text] on several standard saddle-point problems from the optimization and operations research literature, including matrix games, extensive-form games, distributionally robust logistic regression, and Markov decision processes. In each setting, [Formula: see text] achieves state-of-the-art numerical performance and outperforms classical methods, without the need for any choice of step sizes or other algorithmic parameters. Funding: J. Grand-Clément is supported by the Agence Nationale de la Recherche [Grant 11-LABX-0047] and by Hi! Paris. C. Kroer is supported by the Office of Naval Research [Grant N00014-22-1-2530] and by the National Science Foundation [Grant IIS-2147361].
more »
« less
- Award ID(s):
- 2147361
- PAR ID:
- 10442687
- Date Published:
- Journal Name:
- Mathematics of Operations Research
- ISSN:
- 0364-765X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Blackwell approachability is a framework for reasoning about repeated games with vector-valued payoffs. We introduce predictive Blackwell approachability, where an estimate of the next payoff vector is given, and the decision maker tries to achieve better performance based on the accuracy of that estimator. In order to derive algorithms that achieve predictive Blackwell approachability, we start by showing a powerful connection between four well-known algorithms. Follow-the-regularized-leader (FTRL) and online mirror descent (OMD) are the most prevalent regret minimizers in online convex optimization. In spite of this prevalence, the regret matching (RM) and regret matching+ (RM+) algorithms have been preferred in the practice of solving large-scale games (as the local regret minimizers within the counterfactual regret minimization framework). We show that RM and RM+ are the algorithms that result from running FTRL and OMD, respectively, to select the halfspace to force at all times in the underlying Blackwell approachability game. By applying the predictive variants of FTRL or OMD to this connection, we obtain predictive Blackwell approachability algorithms, as well as predictive variants of RM and RM+. In experiments across 18 common zero-sum extensive-form benchmark games, we show that predictive RM+ coupled with counterfactual regret minimization converges vastly faster than the fastest prior algorithms (CFR+, DCFR, LCFR) across all games but two of the poker games, sometimes by two or more orders of magnitude.more » « less
-
In this paper, we consider a class of monotone inclusion (MI) problems of finding a zero of the sum of two monotone operators, in which one operator is maximal monotone, whereas the other is locally Lipschitz continuous. We propose primal-dual (PD) extrapolation methods to solve them using a point and operator extrapolation technique, whose parameters are chosen by a backtracking line search scheme. The proposed methods enjoy an operation complexity of [Formula: see text] and [Formula: see text], measured by the number of fundamental operations consisting only of evaluations of one operator and resolvent of the other operator, for finding an ε-residual solution of strongly and nonstrongly MI problems, respectively. The latter complexity significantly improves the previously best operation complexity [Formula: see text]. As a byproduct, complexity results of the primal-dual extrapolation methods are also obtained for finding an ε-KKT or ε-residual solution of convex conic optimization, conic constrained saddle point, and variational inequality problems under local Lipschitz continuity. We provide preliminary numerical results to demonstrate the performance of the proposed methods. Funding: This work was partially supported by the National Science Foundation [Grant IIS-2211491], the Office of Naval Research [Grant N00014-24-1-2702], and the Air Force Office of Scientific Research [Grant FA9550-24-1-0343].more » « less
-
Meka, Raghu (Ed.)We provide a general method to convert a "primal" black-box algorithm for solving regularized convex-concave minimax optimization problems into an algorithm for solving the associated dual maximin optimization problem. Our method adds recursive regularization over a logarithmic number of rounds where each round consists of an approximate regularized primal optimization followed by the computation of a dual best response. We apply this result to obtain new state-of-the-art runtimes for solving matrix games in specific parameter regimes, obtain improved query complexity for solving the dual of the CVaR distributionally robust optimization (DRO) problem, and recover the optimal query complexity for finding a stationary point of a convex function.more » « less
-
We study the impact of nonconvexity on the complexity of nonsmooth optimization, emphasizing objectives such as piecewise linear functions, which may not be weakly convex. We focus on a dimension-independent analysis, slightly modifying a 2020 black-box algorithm of Zhang-Lin-Jegelka-Sra-Jadbabaie that approximates an ϵ-stationary point of any directionally differentiable Lipschitz objective using [Formula: see text] calls to a specialized subgradient oracle and a randomized line search. Seeking by contrast a deterministic method, we present a simple black-box version that achieves [Formula: see text] for any difference-of-convex objective and [Formula: see text] for the weakly convex case. Our complexity bound depends on a natural nonconvexity modulus that is related, intriguingly, to the negative part of directional second derivatives of the objective, understood in the distributional sense. Funding: This work was supported by the National Science Foundation [Grant DMS-2006990].more » « less
An official website of the United States government

