The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect – people fall into their thoughts and reinforce their pre-existing beliefs. The previous works for the political stance problem focus on (1) identifying political factors that could reflect the political stance of a news article and (2) capturing those factors effectively. Despite their empirical successes, they are not sufficiently justified in terms of how effective their identified factors are in the political stance prediction. Motivated by this, in this work, we conduct a user study to investigate important factors in political stance prediction, and observe that the context and tone of a news article (implicit) and external knowledge for real-world entities appearing in the article (explicit) are important in determining its political stance. Based on this observation, we propose a novel knowledge-aware approach to political stance prediction (KHAN), employing (1) hierarchical attention networks (HAN) to learn the relationships among words and sentences in three different levels and (2) knowledge encoding (KE) to incorporate external knowledge for real-world entities into the process of political stance prediction. Also, to take into account the subtle and important difference between opposite political stances, we build two independent political knowledge graphs (KG) (i.e., KG-lib and KG-con) by ourselves and learn to fuse the different political knowledge. Through extensive evaluations on three real-world datasets, we demonstrate the superiority of KHAN in terms of (1) accuracy, (2) efficiency, and (3) effectiveness.
more »
« less
This content will become publicly available on June 28, 2025
P3Sum: Preserving Author’s Perspective in News Summarization with Diffusion Language Models
In this work, we take a first step towards designing summarization systems that are faithful to the author’s intent, not only the semantic content of the article. Focusing on a case study of preserving political perspectives in news summarization, we find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries, misrepresenting the intent and perspectives of the news authors. We thus propose P3Sum, a diffusion model-based summarization approach controlled by political perspective classifiers. In P3Sum, the political leaning of a generated summary is iteratively evaluated at each decoding step, and any drift from the article’s original stance incurs a loss back-propagated to the embedding layers, steering the political stance of the summary at inference time. Extensive experiments on three news summarization datasets demonstrate that P3Sum outperforms state-of-the-art summarization systems and large language models by up to 13.7% in terms of the success rate of stance preservation, with competitive performance on standard metrics of summarization quality. Our findings present a first analysis of preservation of pragmatic features in summarization, highlight the lacunae in existing summarization models—that even state-of-the-art models often struggle to preserve author’s intents—and develop new summarization systems that are more faithful to author’s perspectives.
more »
« less
- PAR ID:
- 10520224
- Publisher / Repository:
- NAACL
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ideology is at the core of political science research. Yet, there still does not exist general-purpose tools to characterize and predict ideology across different genres of text. To this end, we study Pretrained Language Models using novel ideology-driven pretraining objectives that rely on the comparison of articles on the same story written by media of different ideologies. We further collect a large-scale dataset, consisting of more than 3.6M political news articles, for pretraining. Our model POLITICS outperforms strong baselines and the previous state-of-the-art models on ideology prediction and stance detection tasks. Further analyses show that POLITICS is especially good at understanding long or formally written texts, and is also robust in few-shot learning scenarios.more » « less
-
Analyzing ideology and polarization is of critical importance in advancing our grasp of modern politics. Recent research has made great strides towards understanding the ideological bias (i.e., stance) of news media along the left-right spectrum. In this work, we instead take a novel and more nuanced approach for the study of ideology based on its left or right positions on the issue being discussed. Aligned with the theoretical accounts in political science, we treat ideology as a multi-dimensional construct, and introduce the first diachronic dataset of news articles whose ideological positions are annotated by trained political scientists and linguists at the paragraph level. We showcase that, by controlling for the author{'}s stance, our method allows for the quantitative and temporal measurement and analysis of polarization as a multidimensional ideological distance. We further present baseline models for ideology prediction, outlining a challenging task distinct from stance detection.more » « less
-
We study generating abstractive summaries that are faithful and factually consistent with the given articles. A novel contrastive learning formulation is presented, which leverages both reference summaries, as positive training data, and automatically generated erroneous summaries, as negative training data, to train summarization systems that are better at distinguishing between them. We further design four types of strategies for creating negative samples, to resemble errors made commonly by two state-of-the-art models, BART and PEGASUS, found in our new human annotations of summary errors. Experiments on XSum and CNN/Daily Mail show that our contrastive learning framework is robust across datasets and models. It consistently produces more factual summaries than strong comparisons with post error correction, entailmentbased reranking, and unlikelihood training, according to QA-based factuality evaluation. Human judges echo the observation and find that our model summaries correct more errors.more » « less
-
Political and social scientists monitor, analyze and predict political unrest and violence, preventing (or mitigating) harm, and promoting the management of global conflict. They do so using event coder systems, which extract structured representations from news articles to design forecast models and event-driven continuous monitoring systems. Existing methods rely on expensive manual annotated dictionaries and do not support multilingual settings. To advance the global conflict management, we propose a novel model, Multi-CoPED (Multilingual Multi-Task Learning BERT for Coding Political Event Data), by exploiting multi-task learning and state-of-the-art language models for coding multilingual political events. This eliminates the need for expensive dictionaries by leveraging BERT models' contextual knowledge through transfer learning. The multilingual experiments demonstrate the superiority of Multi-CoPED over existing event coders, improving the absolute macro-averaged F1-scores by 23.3% and 30.7% for coding events in English and Spanish corpus, respectively. We believe that such expressive performance improvements can help to reduce harms to people at risk of violence.more » « less