skip to main content

This content will become publicly available on April 30, 2024

Title: KHAN: Knowledge-Aware Hierarchical Attention Networks for Accurate Political Stance Prediction
The political stance prediction for news articles has been widely studied to mitigate the echo chamber effect – people fall into their thoughts and reinforce their pre-existing beliefs. The previous works for the political stance problem focus on (1) identifying political factors that could reflect the political stance of a news article and (2) capturing those factors effectively. Despite their empirical successes, they are not sufficiently justified in terms of how effective their identified factors are in the political stance prediction. Motivated by this, in this work, we conduct a user study to investigate important factors in political stance prediction, and observe that the context and tone of a news article (implicit) and external knowledge for real-world entities appearing in the article (explicit) are important in determining its political stance. Based on this observation, we propose a novel knowledge-aware approach to political stance prediction (KHAN), employing (1) hierarchical attention networks (HAN) to learn the relationships among words and sentences in three different levels and (2) knowledge encoding (KE) to incorporate external knowledge for real-world entities into the process of political stance prediction. Also, to take into account the subtle and important difference between opposite political stances, we build two independent political knowledge graphs (KG) (i.e., KG-lib and KG-con) by ourselves and learn to fuse the different political knowledge. Through extensive evaluations on three real-world datasets, we demonstrate the superiority of KHAN in terms of (1) accuracy, (2) efficiency, and (3) effectiveness.  more » « less
Award ID(s):
2134079 1939725 1947135
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
WWW '23: Proceedings of the ACM Web Conference 2023
Page Range / eLocation ID:
1572 to 1583
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    This article explores how Twitter’s algorithmic timeline influences exposure to different types of external media. We use an agent-based testing method to compare chronological timelines and algorithmic timelines for a group of Twitter agents that emulated real-world archetypal users. We first find that algorithmic timelines exposed agents to external links at roughly half the rate of chronological timelines. Despite the reduced exposure, the proportional makeup of external links remained fairly stable in terms of source categories (major news brands, local news, new media, etc.). Notably, however, algorithmic timelines slightly increased the proportion of “junk news” websites in the external link exposures. While our descriptive evidence does not fully exonerate Twitter’s algorithm, it does characterize the algorithm as playing a fairly minor, supporting role in shifting media exposure for end users, especially considering upstream factors that create the algorithm’s input—factors such as human behavior, platform incentives, and content moderation. We conclude by contextualizing the algorithm within a complex system consisting of many factors that deserve future research attention. 
    more » « less
  2. Abstract

    Ideological divisions in the United States have become increasingly prominent in daily communication. Accordingly, there has been much research on political polarization, including many recent efforts that take a computational perspective. By detecting political biases in a text document, one can attempt to discern and describe its polarity. Intuitively, the named entities (i.e., the nouns and the phrases that act as nouns) and hashtags in text often carry information about political views. For example, people who use the term “pro-choice” are likely to be liberal and people who use the term “pro-life” are likely to be conservative. In this paper, we seek to reveal political polarities in social-media text data and to quantify these polarities by explicitly assigning a polarity score to entities and hashtags. Although this idea is straightforward, it is difficult to perform such inference in a trustworthy quantitative way. Key challenges include the small number of known labels, the continuous spectrum of political views, and the preservation of both a polarity score and a polarity-neutral semantic meaning in an embedding vector of words. To attempt to overcome these challenges, we propose thePolarity-awareEmbeddingMulti-task learning (PEM) model. This model consists of (1) a self-supervised context-preservation task, (2) an attention-based tweet-level polarity-inference task, and (3) an adversarial learning task that promotes independence between an embedding’s polarity component and its semantic component. Our experimental results demonstrate that ourPEMmodel can successfully learn polarity-aware embeddings that perform well at tweet-level and account-level classification tasks. We examine a variety of applications—including a study of spatial and temporal distributions of polarities and a comparison between tweets from Twitter and posts from Parler—and we thereby demonstrate the effectiveness of ourPEMmodel. We also discuss important limitations of our work and encourage caution when applying thePEMmodel to real-world scenarios.

    more » « less
  3. Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box. 
    more » « less
  4. Learning the dependency relations among entities and the hierarchy formed by these relations by mapping entities into some order embedding space can effectively enable several important applications, including knowledge base completion and prerequisite relations prediction. Nevertheless, it is very challenging to learn a good order embedding due to the existence of partial ordering and missing relations in the observed data. Moreover, most application scenarios do not provide non-trivial negative dependency relation instances. We therefore propose a framework that performs dependency relation prediction by exploring both rich semantic and hierarchical structure information in the data. In particular, we propose several negative sampling strategies based on graph-specific centrality properties, which supplement the positive dependency relations with appropriate negative samples to effectively learn order embeddings. This research not only addresses the needs of automatically recovering missing dependency relations, but also unravels dependencies among entities using several real-world datasets, such as course dependency hierarchy involving course prerequisite relations, job hierarchy in organizations, and paper citation hierarchy. Extensive experiments are conducted on both synthetic and real-world datasets to demonstrate the prediction accuracy as well as to gain insights using the learned order embedding. 
    more » « less
    more » « less