skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


Title: Enhancing sorption kinetics by oriented and single crystalline array-structured ZSM-5 film on monoliths
Abstract To enhance the reaction kinetics without sacrificing activity in porous materials, one potential solution is to utilize the anisotropic distribution of pores and channels besides enriching active centers at the reactive surfaces. Herein, by designing a unique distribution of oriented pores and single crystalline array structures in the presence of abundant acid sites as demonstrated in the ZSM-5 nanorod arrays grown on monoliths, both enhanced dynamics and improved capacity are exhibited simultaneously in propene capture at low temperature within a short duration. Meanwhile, the ZSM-5 array also helps mitigate the long-chain HCs and coking formation due to the enhanced diffusion of reactants in and reaction products out of the array structures. Further integrating the ZSM-5 array with Co3O4nanoarray enables comprehensive propene removal throughout a wider temperature range. The array structured film design could offer energy-efficient solutions to overcome both sorption and reaction kinetic restrictions in various solid porous materials for various energy and chemical transformation applications.  more » « less
Award ID(s):
1919231
PAR ID:
10520235
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of olefin addition to a stream of dimethyl ether on the methanol homologation reaction is investigated using iron-substituted zeolites Fe-beta and Fe-ZSM-5. The reaction was investigated using plug-flow microreactors in the temperature range of 240-400 degrees C, at a total pressure of 0.239 MPa and a WHSV of 6.12 (g DME/ gcat-hr). For Fe-beta (Si/Fe= 9.2) catalysts, isobutene co-feeding almost doubles dimethyl ether (DME) consumption rate and shifts selectivity towards larger olefins with carbon numbers from 5 to 7. Addition of isobutene above 6.3%, however, resulted in a reduction of DME consumption rates, an effect assigned to the replacement of surface methoxy groups for adsorbed olefins in the zeolite pores. Below a temperature of 340 degrees C hydride-transfer rates are negligible; reaction rates are stable for over 5.5 h and the products consist almost exclusively of olefins and a small amount of methane. Above 360 degrees C the onset of catalytic hydride transfer processes is observed leading to fast catalyst deactivation rates and an increase in the concentration of aromatic species. Iron ZSM-5 (Si/Fe = 21.4) catalysts under similar reaction conditions consumes methanol faster than Febeta at approximately three times the TOF (on a per iron basis). The Fe-ZSM-5 catalyst was selective to a distribution of products (C5 to C8) as compared to Fe-beta which was selective to primarily C5 and C7. Co-feeding larger olefins (2-methyl-2-butene, 2,3-dimethyl-2-butene, 2,3,3-trimethyl-1-butene, and 2,4,4-trimethyl-2-pentene) at a 3.9% olefin concentration over Fe-beta changed selectivity towards cracking products (C4 compounds such as isobutene). As the size of the olefin increases, a reduction of DME consumption rate is also observed. These results show that co-feeding olefins with DME over Fe-zeolites is a promising route to increase methylation rates at relatively low temperatures producing larger branched olefins and that the product distribution is highly dependent on the zeolite pore size and structure of the olefin. 
    more » « less
  2. Abstract A local electric field is induced to engineer the interface of vanadium pentoxide nanofibers (V2O5‐NF) to manipulate the charge transport behavior and obtain high‐energy and durable supercapacitors. The interface of V2O5‐NF is modified with oxygen vacancies (Vö) in a one‐step polymerization process of polyaniline (PANI). In the charge storage process, the local electric field deriving from the lopsided charge distribution around Vö will provide Coulombic forces to promote the charge transport in the resultant Vö‐V2O5/PANI nanocable electrode. Furthermore, an ≈7 nm porous PANI coating serves as the external percolated charge transport pathway. As the charge transfer kinetics are synergistically enhanced by the dual modifications, Vö‐V2O5/PANI‐based supercapacitors exhibit an excellent specific capacitance (523 F g−1) as well as a long cycling lifespan (110% of capacitance remained after 20 000 cycles). This work paves an effective way to promote the charge transfer kinetics of electrode materials for next‐generation energy storage systems. 
    more » « less
  3. Abstract Non‐porous small molecule adsorbents such as {[3,5‐(CF3)2Pz]Cu}3(where Pz=pyrazolate) are an emerging class of materials that display attractive features for ethene−ethane separation. This work examines the chemistry of fluorinated copper(I) pyrazolates {[3,5‐(CF3)2Pz]Cu}3and {[4‐Br‐3,5‐(CF3)2Pz]Cu}3with much larger 1‐butene in both solution and solid state, and reports the isolation of rare 1‐butene complexes of copper(I), {[3,5‐(CF3)2Pz]Cu(H2C=CHC2H5)}2and {[4‐Br‐3,5‐(CF3)2Pz]Cu(H2C=CHC2H5)}2and their structural, spectroscopic, and computational data. The copper−butene adduct formation in solution involves olefin‐induced structural transformation of trinuclear copper(I) pyrazolates to dinuclear mixed‐ligand systems. Remarkably, larger 1‐butene is able to penetrate the dense solid material and to coordinate with copper(I) ions at high molar occupancy. A comparison to analogous ethene and propene complexes of copper(I) is also provided. 
    more » « less
  4. Studying the Brownian motion of fibers and semi-flexible filaments in porous media is the key to understanding the transport and mechanical properties in a variety of systems. The motion of semi-flexible filaments in gel-like porous media including polymer networks and cell cytoskeleton has been studied theoretically and experimentally, whereas the motion of these materials in packed-colloid porous media, advanced foams, and rock-like systems has not been thoroughly studied. Here we use video microscopy to directly visualize the reptation and transport of intrinsically fluorescent, semiflexible, semiconducting single-walled carbon nanotubes (SWCNTs) in the sub-micron pores of packed colloids as fixed obstacles of packed-colloid porous media. By visualizing the filament motion and Brownian diffusion at different locations in the pore structures, we study how the properties of the environment, like the pore shape and pore structure of the porous media, affect SWCNT mobility. These results show that the porous media structure controls SWCNT reorientation during Brownian diffusion. In packed-colloid pores, SWCNTs diffuse along straight pores and bend across pores; conversely, in gel pores, SWCNTs consistently diffuse into curved pores, displaying a faster parallel motion. In both gel and packed-colloid porous media, SWCNT finite stiffness enhances SWCNT rotational diffusion and prevents jamming, allowing for inter-pore diffusion. 
    more » « less
  5. Abstract Increasing the thickness of the electrodes is considered the primary strategy to elevate battery energy density. However, as the thickness increases, rate performance, cycling performance, and mechanical stability are affected due to the sluggish ion transfer kinetics and compromised structural integrity. Inspired by the natural hierarchical porous structure of trees, electrodes with bioinspired architecture are fabricated to address these challenges. Specifically, electrodes with aligned columns consist of tree‐inspired vertical channels, and hierarchical pores are constructed by screen printing and ice‐templating, imparting enhanced electrochemical and mechanical performance. Employing an aqueous‐based binder, the LiNi0.8Mn0.1Co0.1O2cathode achieves a high areal energy density of 15.1 mWh cm−2at a rate of 1C at mass loading of 26.0 mg cm−2, benefitting from the multiscale pores that elevated charge transfer kinetics in the thick electrode. The electrodes demonstrate capacity retention of 90% at the 100th cycle at a high current density of 5.2 mA cm−2. To understand the mechanisms that promote electrode performance, simplified electro‐chemo‐mechanical models are developed, the drying process and the charge‐discharge process are simulated. The simulation results suggested that the improved performance of the designed electrode benefits from the lower ohmic overpotential and less strain gradient and stress concentration due to the hierarchical porous architecture. 
    more » « less